Supporting Information for ## Oxidized Co-Sn Nanoparticles as Long-Lasting Anode Materials for Lithium-Ion Batteries Marc Walter,^{a,b} Simon Doswald,^{a,b} Frank Krumeich,^a Meng He,^{a,b} Roland Widmer,^c Nicholas P. Stadie,^{a,b,d} and Maksym V. Kovalenko*^{a,b} ^a Department of Chemistry and Applied Biosciences, ETH Zürich – Swiss Federal Institute of Technology Zürich, Vladimir Prelog Weg 1, 8093 Zürich (Switzerland) ^b Empa-Swiss Federal Laboratories for Materials Science and Technology, Laboratory for thin films and photovoltaics, Überlandstrasse 129, 8600 Dübendorf (Switzerland) ^c Empa-Swiss Federal Laboratories for Materials Science and Technology, Nanotech@surfaces Laboratory, Überlandstrasse 129, 8600 Dübendorf (Switzerland) ^d Present address: Department of Chemistry and Biochemistry, Montana State University, 59717 Montana (United States) [*] Prof. Dr. Maksym V. Kovalenko E-mail: mvkovalenko@ethz.ch **Figure S1.** EDX spectrum of amorphous Co NPs. The peak denoted as S (corresponding to ∼1 wt% of the sample) could be attributed to residual DMSO, left over after washing. **Figure S2.** HR-TEM images along with selected area electron diffraction (SAED) and d-spacing of Co NPs (a, b), Sn NPs (c, d) and CoSn₂ NPs (e, f). **Figure S3.** HR-TEM images of $CoSn_2O_x$ NPs with d-spacing. $\label{eq:Figure S4.} \textbf{Figure S4.} \ (A) \ Elemental \ EDX-STEM \ maps, \ (B) \ HAADF-STEM, \ and \ (C) \ HR-TEM \ images \\ of \ CoSn_2O_x \ NPs.$ **Figure S5.** (a) XPS spectra of $CoSn_2O_x$ NPs. Survey spectrum assigning the peaks to the elements according to https://srdata.nist.gov/xps/EnergyTypeValSrch.aspx. Detail spectra of (b) C 1s, (c) O 1s, (d) Co 2p and (e) Sn 3d, where oxygen as well as carbon show two components, but more important, cobalt and tin are completely oxidized, most probably forming $Co(OH)_2$ and SnO_2 as follows form a ca. 3 eV and 1.7 eV shift of the individual peaks, respectively. **Figure S6.** Size-distribution histograms of (a) Co NPs, (b) Sn NPs, (c) CoSn₂ NPs and (d) CoSn₂O_x NPs. Mean sizes and standard deviations of nanoparticles were determined using PEBBLES (Mondini et al., *Nanoscale*, **2012**, *4*, 5356-5372). **Figure S7.** XRD pattern of a mixture of bulk Co and Sn powders (molar ratio 1:2) after ball-milling for 4 hours under nitrogen. All reflections can be indexed as belonging to Sn (ICDD PDF entry No.: 00-004-0673) or Co (ICDD PDF entry No.: 00-005-0727). **Figure S8.** Galvanostatic charge/discharge curves with full capacity range for (a) Sn NPs, (b) CoSn₂ NPs, and (c) CoSn₂O_x NPs measured during 1st, 10th, 100th and 1000th cycle at a current density of 1984 mA g⁻¹. **Figure S9.** Cyclic voltammograms of crystalline Sn NPs in a lithium-ion half-cell using a scan rate of 0.1 mV s⁻¹ in the potential range of 0.005–1.0 V. **Figure S10.** Cyclic voltammograms of $CoSn_2$ NPs in a lithium-ion half-cell using a scan rate of 0.1 mV s⁻¹ in the potential range of 0.005–1.0 V. **Figure S11.** Cyclic voltammograms of $CoSn_2O_x$ NPs in a lithium-ion half-cell using a scan rate of 0.1 mV s⁻¹ in the potential range of 0.005–1.0 V. **Figure S12.** XRD pattern (with TEM image as inset) of CoSn₂ NPs prepared by wet-chemical synthesis. The two unindexed peaks at 30° and 43° might correspond to SnO and CoO. For synthesizing CoSn₂ NPs wet-chemically SnCl₂ (1.33 mmol) and CoCl₂ (0.67 mmol) dissolved in NMP (3 mL) were injected into a solution of NaBH₄ in NMP (16 mmol in 17 mL) at 150 °C and kept at this temperature for 1 hour. **Figure S13.** Cycling stability of CoSn₂ NPs prepared by wet-chemical synthesis in lithiumion half-cells using a current of 1984 mA g⁻¹ in the potential range of 0.005–2.0 V. **Figure S14.** Rate capability tests for graphite in lithium-ion half-cells within the potential range of 0.005–1.0 V using the same conditions as for Co-Sn-based NPs in Figure 4. **Figure S15.** Galvanostatic charge/discharge curves for a $CoSn_2O_x/LiCoO_2$ full-cell. Cells were cycled with a current of 500 mA g⁻¹ in the potential range of 2.0–3.9 V. The specific capacities and currents correspond to the mass of the $CoSn_2O_x$ NPs. **Table S1.** Comparison of the electrochemical performance of $CoSn_2O_x$ NPs (present work) with other reported systems as anode materials for LIBs. | Anode material | Current
density
(mAg ⁻¹) | Initial capacity (mAhg ⁻¹) | Retained capacity (mAhg ⁻¹) | Cycle
number | Potential
range (V vs.
Li ⁺ /Li) | |--|--|--|---|-----------------|---| | $CoSn_2O_x$ NPs (present work) | 1984 | 450
(570 at
cycle 100) | 525 | 1500 | 0.005–1.0 V | | CoSnO ₃ @GN ¹ | 2000 | ~708 | 566 | 1500 | 0.005-3.0 V | | Co–Sn/carbon
nanofibers
composite ² | 161 | 700 | 560 | 80 | 0.02–2.8 V | | SnFeCo alloy composite ³ | 50 | 585 | 507 | 50 | 0.02-1.5 V | | Co ₃ Sn ₂ @Co/nitroge
n doped graphene ⁴ | 250 | 1600 | 1615 | 100 | 0.005–3 V | | CoSnx@C-PAn ⁵ | 200 | 2038 | 2038 | 100 | 0.005–3 V | |--|------|--------------------|-------|------|-------------| | meso-Co0.3Sn0.7 ⁶ | 50 | 663 | 530 | 50 | 0.001–2.0 V | | Sn–Co nanoalloy
embedded in porous
N-doped carbon ⁷ | 2000 | 472 | 472 | 500 | 0.01–3V | | Sn-Co-graphene composites ⁸ | 500 | 672 | 560 | 60 | 0.01–3 V | | nano Sn-C ⁹ | 3000 | ~450 (at cycle 50) | 536.5 | 1000 | 0.01–2.5 V | | nano Sn-C ¹⁰ | 4000 | ~390 | 410 | 1000 | 0.02-3.0 V | | nano Sn-C ¹¹ | 200 | 757 | 722 | 200 | 0.01–2.0 V | | Ni_3Sn_2 microcages ¹² | 570 | ~304 | ~304 | 1000 | 0.01–2.0 V | | Sn NCs ¹³ | 1000 | ~800 | 550 | 100 | 0.005–2.0 V | | nano Sn-C ¹⁴ | 200 | ~710 | ~710 | 130 | 0-3.0 V | | Sn-carbon/silica ¹⁵ | 300 | ~440 | ~440 | 100 | 0-2.5 V | $\label{eq:comparison} \textbf{Table S2.} \ \ Comparison \ of the theoretical \ volumetric \ capacities \ for \ graphite \ or \ CoSn_2O_x\mbox{-based}$ anodes in full-cells with LiCoO_2 cathode. | System | Capacity
[mAh/g] | Density [g/cm³] | Vol. capacity [mAh/cm³] | Vol. cell capacity [mAh/cm³] | Discharge
voltage [V] | Vol. energy
density [Wh/L] | |--|---------------------|-----------------|-------------------------|------------------------------|--------------------------|-------------------------------| | Graphite/LiCoO ₂ | 372/140 | 2.2/5.1 | 818/714 | 381 | 3.55 | 1353 | | CoSn ₂ O _x /LiCoO ₂ | 576/140 | 7.6*/5.1 | 4378/714 | 614 | 3.15 | 1934 | ^{*}based on the bulk densities of Sn (7.3 g/cm³) and Co (8.9 g/cm³). ## References - 1. C. Wu, J. Maier and Y. Yu, *Adv. Funct. Mater.*, 2015, **25**, 3488-3496. - 2. B.-O. Jang, S.-H. Park and W.-J. Lee, *J. Alloys Compd.*, 2013, **574**, 325-330. - 3. X. Li, X. He, Y. Xu, L. Huang, J. Li, S. Sun and J. Zhao, *J. Mater. Chem. A*, 2015, **3**, 3794-3800. - 4. N. Mahmood, C. Zhang, F. Liu, J. Zhu and Y. Hou, ACS Nano, 2013, 7, 10307-10318. - 5. N. Mahmood, J. Zhu, S. Rehman, Q. Li and Y. Hou, *Nano Lett.*, 2015, **15**, 755-765. - 6. G. O. Park, J. Yoon, J. K. Shon, Y. S. Choi, J. G. Won, S. B. Park, K. H. Kim, H. Kim, W.-S. Yoon and J. M. Kim, *Adv. Funct. Mater.*, 2016, **26**, 2800-2808. - 7. X. Shi, H. Song, A. Li, X. Chen, J. Zhou and Z. Ma, *J. Mater. Chem. A*, 2017, **5**, 5873-5879. - 8. J. Zhu, D. Wang, T. Liu and C. Guo, *Electrochim. Acta*, 2014, **125**, 347-353. - 9. X. Huang, S. Cui, J. Chang, P. B. Hallac, C. R. Fell, Y. Luo, B. Metz, J. Jiang, P. T. Hurley and J. Chen, *Angew. Chem. Int. Ed.*, 2015, **54**, 1490-1493. - 10. N. Zhang, Q. Zhao, X. Han, J. Yang and J. Chen, *Nanoscale*, 2014, **6**, 2827-2832. - 11. Z. Zhu, S. Wang, J. Du, Q. Jin, T. Zhang, F. Cheng and J. Chen, *Nano Lett.*, 2014, **14**, 153-157. - 12. J. Liu, Y. Wen, P. A. van Aken, J. Maier and Y. Yu, *Nano Lett.*, 2014, 14, 6387-6392. - 13. K. Kravchyk, L. Protesescu, M. I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin and M. V. Kovalenko, *J. Am. Chem. Soc.*, 2013, **135**, 4199-4202. - 14. Y. Xu, Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M. R. Zachariah and C. Wang, *Nano Lett.*, 2013, **13**, 470-474. - 15. J. Hwang, S. H. Woo, J. Shim, C. Jo, K. T. Lee and J. Lee, *ACS Nano*, 2013, **7**, 1036-1044.