## Supporting information for:

Flexible Integrated Diode-Transistor Logic (DTL) Driving Circuits Based on Printed Carbon Nanotube Thin Film Transistors with Low Operation Voltage

Tingting Liu<sup>a,b</sup>, Jianwen Zhao<sup>a\*</sup>, Weiwei Xu<sup>a</sup>, Junyan Dou<sup>a</sup>, Xinluo Zhao<sup>c</sup>, Wei Deng<sup>d</sup>, Changting Wei<sup>a</sup>, Wenya Xu<sup>a</sup>, Wenrui Guo<sup>a</sup>, Wenming Su<sup>a</sup>, Jiansheng Jie<sup>d</sup>, Zheng Cui<sup>a\*</sup> <sup>a</sup>Printable Electronics Research Centre, Suzhou Institute of Nanotech and nano-bionics, Chinese Academy of Sciences, No. 398 Ruoshui Road, SEID, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, PR China

<sup>b</sup>College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.

<sup>c</sup>Department of Physics, Institute of Low-dimensional Carbons and Device Physics, Shanghai University, 99 Shangda Road, Shanghai, 200444, China

<sup>d</sup>Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China

E-mail: jwzhao2011@sinano.ac.cn; zcui2009@sinano.ac.cn

Telephone: +86-512-62872705, Fax: +86-512-62603079





using PMDA/ODA as dielectric materials with different thickness. a)  $1.6 \mu m$ , b)  $1 \mu m$  nm and c) 550 nm, and d-f) the corresponding thickness of PMDA/ODA thin films measured by a profilometer.



Figure S2 The relationship between the capacitance of dielectric layer and the frequency.



Figure S3 Leakage currents of printed SWCNT TFTs on PET substrates



**Figure S4** a) TGA and b) FTIR spectra of PMDA/ODA after annealing at different temperature. 1 and 2 in Figure S3b represent the annealing temperatures are 60 °C and 150 °C for 1 h, respectively. A-F in Figure S3b represent function groups. A) 1550 cm<sup>-1</sup> C-N stretching, amide II; B)1660 cm-1, C=O stretching, amide I; C)1722 cm<sup>-1</sup>, asymmetric C=O stretching, imide I; D)1780 cm<sup>-1</sup>, symmetric C=O stretching, imide I; E) 2940 and 3060 cm<sup>-1</sup>, N-H bending; F)3200 cm<sup>-1</sup>, N-H stretching.



Figure S5 Output voltages of 10 printed SWCNT TFT devices with a common gate electrode under periodic illumination with white light (light intensity ~745  $\mu$ W per cm<sup>2</sup>).

| NO.                            | 1    | 2     | 3     | 4     | 5     | 6    |
|--------------------------------|------|-------|-------|-------|-------|------|
| λ(nm)                          | 420  | 450   | 475   | 500   | 520   | 550  |
| Intensity(mw/cm <sup>2</sup> ) | 5.93 | 10.11 | 11.13 | 18.87 | 14.28 | 9.19 |

Table S1 The intensities and wavelengths of the illumination lights



**Figure S6** The photoresponse characteristics of a printed DTL driving circuit a) before bending and d) under bending strain, c) and d) optical images of printed DTL driving circuits under bending strain.