Supplementary information

Controlled growth and optical response of semi-hollow plasmonic nanocavity and ultrathin sulfide nanosheets on Au/Ag

platelets

Ying Xie,^a Gui-Ming Pan,^a Ying-Ying Li,^a Kai Chen,^b Yong-Jie Lin,^b Li Zhou,*^a and Qu-Quan Wang*^{a,b}

^aKey Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China

^bThe Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China

1. Directly growth of CdS on Au/Ag nanoplates

Fig. S1 TEM image of destroyed nanostructures after CdS nanoparticles were deposited on the Au/Ag nanoplates instead of (Au/Ag)-Ag nanocavities.

For comparison, the synthesized Ag/Ag nanoplates were used as templates to directly grow CdS without Au ions etching. Other reaction conditions of growing CdS remained unchanged. Figure S1 shows TEM image of destroyed (Ag/Ag)-CdS nanoplates. Unexpectedly, the generating CdS nanoparticles directly were grown on Au/Ag nanoplates, but destroy Ag atoms on the triangular faces by Cd ions.

2. Optical response of Ag₂S nanoparticles

Fig. S2 The extinction spectra of Ag_2S nanoparticles prepared with and without adding Na₃CA.

The Ag₂S nanoparticles are prepared by mixing AgNO₃ (20 mM, 2 mL), TAA (10 mM, 0.5 mL), and Na₃CA (100 mM, 1 mL), while the mixture was heated for 4 h in a 60 °C oven. For comparison, we have added pure water (1 mL) to replace Na₃CA and remained other reaction conditions. The extinction spectra of Ag₂S nanoparticles are obtained for discussion. The results indicate that the presence of Na₃CA in the reaction mixtures leads to a broad band in the ultraviolet region. Here, Na₃CA is used as complexing agent to absorb on nanoparticles and prevents their agglomeration. Besides, Na₃CA can reduce the Ag⁺ ions in the solution to Ag particles for further sulfuration.^{1,2}

3. Stacks of Au/Ag nanoplates on Cu grids

Fig. S3 TEM image of Au/Ag nanoplates assembling upright on Cu grids, which

allows for measurement of their thickness.

1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 300 400 500 600 700 800 900 1000 Wavelength (nm)

4. Optical response of (Au/Ag)-Bi₂S₃/Ag₂S hybrid nanocavities

Fig. S4 The extinction spectrum of (Au/Ag)-Bi₂S₃/Ag₂S hybrid nanocavities.

References

1 S. I. Sadovnikov, Y. V. Kuznetsova and A. A. Rempel, Nano-Structures & Nano-Objects, 2016, 7, 81-91.

2 M. Wang, P. Ju, W. Li, Y. Zhao and X. Han, Dalton Transactions, 2017, **46**, 483-490.