Electronic Supplementary Information

Local symmetry breaking in SnO₂ nanocrystals with cobalt doping and its effect on the optical properties

S. Roy^a, Amish G. Joshi^b, S. Chatterjee^c and Anup K. Ghosh^{*a}

^aMaterials Research Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi – 221005, India.

^bCSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi – 110012, India.

^cDepartment of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi – 221005,

India.

*Email: akghosh@bhu.ac.in

SI-Raman: Tin (IV) oxide crystallizes in rutile tetragonal structure with point group D_{4h}^{14} and space group P4₂/ mnm. Since, each unit cell of SnO₂ consists of two Sn atoms and four O atoms (Z = 2), there are total of 18 (= 3n, n being the number of atoms per unit cell) branches for the vibrational modes in the first Brillouin zone. On the basis of group theory, the irreducible representation for normal lattice vibrational modes at $\Gamma(0,0,0)$ point of the Brillouin zone is [1]:

Among these 18 normal modes, 15 are optic modes and three modes are acoustic. One singly degenerate A_{2u} and three doubly degenerate E_u modes constitutes the IR active modes, the Raman active modes are three singly degenerate modes A1g, B1g, B2g and the doubly degenerate mode Eg. The modes, the singly degenerate A_{2g} and both singly degenerate B_{1u} are silent modes. The remaining – one singly degenerate A_{2u} and one doubly degenerate E_u modes are acoustic. The Raman active modes consist of the vibrations of O atoms with the Sn atoms at rest. The modes A_{1g}, B_{1g} and B_{2g} correspond to the vibrations in a plane perpendicular to the c-axis whereas the mode Eg corresponds to vibrations in the direction of c axis. Both A_{1g} and B_{2g} are related to the expansion and contraction of Sn-O bonds, where, B_{2g} is an asymmetric vibrational mode involving the contraction of all the six Sn-O bonds, of the Sn octahedron, coordinately at the same time, and for the symmetric vibrational mode A1g two Sn-O bonds contract and the other four Sn-O bonds either contract or expand in opposite ways. The B_{1g} mode corresponds to the rotation of the whole octahedron of O atoms around the c axis and Eg mode corresponds to the translation motion of oxygen atoms in oxygen plane [2, 3]. Classically, only the Raman active modes A_{1g} (at ~ 638cm⁻¹), B_{2g} (at ~ 782 cm⁻¹), E_g (at ~ 476 cm⁻¹) and sometimes low intensity B_{1g} (at ~ 123 cm⁻¹) are found in the Raman spectrum of bulk SnO₂ crystals under backscattering geometry owing to the selection rule of $\vec{q} = 0$, i.e., only the phonons near the Brillouin zone center of an infinite periodic crystal contribute to the Raman scattering of incident photons; where, \vec{q} is the wave-vector of the phonons satisfying the scattering conditions:

$$\vec{\mathbf{k}_0} - \vec{\mathbf{k}'} = 2\pi \vec{\tau} - \vec{q}$$
$$E_0 - E' = \pm h\nu$$

where, photons of energy $E_0 = \frac{\hbar^2 k_0^2}{2m_p}$ and momentum $\hbar \vec{k_0}$ are incident on the sample, and are back-scattered with energy $E' = \frac{\hbar^2 k'^2}{2m_p}$ and momentum $\hbar \vec{k'}$; \vec{q} is the wave-vector, and hv is the energy of the phonons, +/sign refer to the creation or annihilation of phonons during the scattering process such that Stokes' Raman shift corresponds to the creation of phonons; and τ is a reciprocal lattice vector [3]. However, when $\vec{q} = 0$ selection rule breaks down such that the phonons around the zone centre also contributes to the Raman spectra of nanocrystals, there occurs a wave-number shift with asymmetric broadening of the Raman active modes A_{1g} , B_{2g} and E_g as compared to the bulk crystals, and in some cases, forbidden modes become Raman active along with inclusion of some surface activated modes, which are otherwise absent in their bulk counterpart. Except the inclusion of forbidden phonon modes in Raman spectra of the SnO₂ nanocrystals, phonon dynamics of the wave number shift and the asymmetric broadening of the bulk Raman modes in the nanocrystals are best governed by the phonon dispersion curves based on the phonon confinement model [4].

SI-FTIR: Fig. 17 (main article) shows the FTIR spectra of the present Sn_{1-x}Co_xO₂ nanocrystals and table S4 lists the observed bands. The most prominent band observed in the region of 460 - 650 cm⁻¹ corresponds to various Sn - O vibrations [5] of SnO_2 crystal structure. The band at 1384 cm⁻¹ is arising from some impurity present in KBr used for dispersion of Sn_{1-x}Co_xO₂ nanocrystals for recording the spectra, which is confirmed by the most intense band at 1384 cm⁻¹ in the FTIR spectrum of the KBr used, as shown in the inset of fig. 17 (main article). The band at 2345 cm⁻¹ is assigned to asymmetric stretching vibrations of CO₂ molecules. The broad absorption band at around 3405 cm⁻¹ and the relatively less broad band at 1634 cm⁻¹ are assigned respectively to the asymmetric stretching vibrations of hydroxyl (-OH) groups and bending vibrations of H-O-H groups of H₂O molecules adsorbed on the surface of the nanocrystals. Since, as the Co doping concentration increases, the size of nanocrystals decreases (as evident from XRD and TEM) and hence the surface effects emerge, the increase in strength of -OH vibrational band at around 3405 cm⁻¹ with doping indicates more presence of hydroxyl species covering the surface of nanocrystals ensuring completion of bonds for surface oxygen [5]. The above-mentioned bands in the spectral range of 1384 cm⁻¹ - 3405 cm⁻¹ are also present in the FTIR spectra of the host KBr matrix (shown in inset of fig. 17) used for recording the spectra which suggests that these bands might be originating because of a combination of the adsorption of the corresponding molecules on the surface of the nanocrystals and their presence in the host KBr. It can be seen that with increase in Co doping concentration, the width as well as the wave number position of the bands remain constant, such that Co doping have no effect on these bands, asserting the above conclusion as well as the purity of Sn_{1-x}Co_xO₂ nanocrystals. The band at around 1100 cm⁻¹ might be due to Sn-OH vibrations [6]. The absence of any Co - OH bonds in the spectrum is due to limitation of instrument which might be because of very low doping concentration of cobalt in Sn_{1-x}Co_xO₂ system. The presence of such hydroxyl species make the nanocrystals to be easily dispersed in polar solvents and the dispersions are also stable such that they can be used in many opto-electronic applications.

SI-UV-Visible:

Determination of optical band gap from Tauc's plot: The optical band gap (E_g) of the present $Sn_{1-x}Co_xO_2$ nanocrystals have been determined experimentally by Tauc's plot using eqn. (S2):

 $F(R)h\nu = B(h\nu - E_g)^n \dots \dots \dots \dots \dots \dots \dots \dots \dots (S2)$

where, F(R) is the Kubelka-Munk function as described in eqn. (S3) and is proportional to the absorption coefficient (α):

hv is the incident photon energy, B is a constant and $n = \frac{1}{2}, \frac{3}{2}, 2$ or 3 depending upon the nature of electronic transition responsible for the absorption. For the determination of the optical band gap (E_g), (F(R)hv)^{1/n} from eqn. (S2) is plotted as ordinate against the photon energy hv (in eV) as abscissa and the most linear region of the obtained curve is extrapolated to F(R) = 0. The point where the extrapolated line cuts the *x*-axis corresponding to F(R) = 0 yields the optical band gap of the semiconductor.

Determination of Urbach's energy: The Urbach type absorption is represented by:

$$\alpha(E) = \alpha_0 \exp\left(\frac{E}{E_u}\right) \dots \dots \dots \dots \dots \dots \dots \dots \dots (S4)$$

where, $\alpha(E)$ is the absorption coefficient of the material at incident photon energy E, α_0 is a coefficient which depends upon the material and E_u is the Urbach energy. Since, F(R), given by eqn. (S3), is proportional to $\alpha(E)$, eqn. (S4) has been modified to eqn. (S5) for the determination of the Urbach energy of the present Sn_{1-x}Co_xO₂ nanoparticles:

Hence,

$$\ln(F(R)) = \ln(\alpha_0) + \frac{E}{E_u} \dots \dots \dots \dots \dots \dots (S6)$$

In (F(R)) has been plotted as ordinate against the incident photon energy E as abscissa and the inverse of the slope of the linear fitting of the most linear portion of the graph directly gives the Urbach energy E_u of the semiconductors.

References:

- A. Diéguez, A. Romano-Rodríguez, A. Vilá and J. R. Morante, *Journal of Applied Physics*, 2001, 90, 1550–1557.
- P. Sangeetha, V. Sasirekha and V. Ramakrishnan, *Journal of Raman Spectroscopy*, 2011, 42, 1634– 1639.
- 3. J. G. Traylor, H. G. Smith, R. M. Nicklow and M. K. Wilkinson, Phys. Rev. B, 1971, 3, 3457-3472.
- 4. K. Roodenko, I. A. Goldthorpe, P. C. McIntyre and Y. J. Chabal, Phys. Rev. B, 2010, 82, 115210.
- L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeauand M. Roumyantseva, *Journal of Solid State Chemistry*, 1998, 135, 78 85.
- 6. J. Suffner, P. Ágoston, J. Kling and H. Hahn, Journal of Nanoparticle Research, 2010, 12, 2579–2588.

Table S1: Results from the Sn3d, O1s and Co2p core level X-ray photoemission spectroscopy (XPS) of the $Sn_{1-x}Co_xO_2$ (x = 0.00, 0.02 and 0.04) nanocrystals.

Co doping conc. (x)	Cons- tituents	B.E. of XPS peak (in eV)	Origin of XPS peak	Spin- Orbit Splitting (in eV)	Oxidation state of constitue nt	FWHM of XPS peak (in eV)	Normalised Area (= Atomic Area/ASF)	Atom co	nic % of nstituen	Co ts	Aton co	nic Rati nstituen	o of ts
								Co ₃ O ₄	Co ²⁺	Co ³⁺	Adso rbed O: Latti ce O	Sn _i : Sn	δ
				Sn	3d Core								
	Sn	486. 611	Lattice Sn 3d _{5/2} in SnO ₂	8.41	+4	1.3	8739.642						
0.000		495. 021	Lattice Sn 3d _{3/2} in SnO ₂								0.277		0.60
0.000				0	1s core					-	0.377	0	223
	0	530. 441	O ²⁻ in SnO ₂ lattice	-	-2	1.207	12216.043				10		223
		531. 579	Surface dangling bonds	-	-	1.956	4606.979						
				Sn	2d Coro				T				
			Lattice	511									
		486. 236	$\frac{\text{Sn } 3d_{5/2}}{\text{in } \text{SnO}_2}$	8.41	+4	1.8	68198.739						
		494. 646	Lattice Sn $3d_{3/2}$ in SnO ₂										
		484. 098	3d _{5/2} of Sn _i	-	0	1.83	4522.777						
0.020	Sn	477. 859	$Mg-K_{\alpha 3}$ X-ray satellite peak w.r.t SnO ₂ 3d _{5/2}			1.74					0.186 83	0.06 632	0.49 301
		476. 066	Mg-K _{α4} X-ray satellite peak w.r.t SnO ₂ 3d _{5/2}			1.77							
				01	s Core								

	529. 816	O ²⁻ in SnO ₂ lattice	-	-2	1.7	116586.029					
	531. 524	Surface dangling bonds	-		1.7	21782.325					
0	519. 772	$\begin{array}{c} Mg-K_{\alpha 4} \\ X-ray \\ satellite \\ peak \\ w.r.t \\ lattice \\ O^{2-} in \\ SnO_2 \end{array}$	-		1.7						
	521. 462	$\begin{array}{c} Mg\text{-}K_{\alpha3} \\ X\text{-}ray \\ satellite \\ peak \\ w.r.t \\ lattice \\ O^{2-} in \\ SnO_2 \end{array}$	-		1.7						
		D 1	Co 2	2p Core							
	798. 549	Doped Co ²⁺ 2p _{1/2} principal peak		2	3.43	2850.987		66.78 % of the total dope d Co conc.	33.16 % Of the total dope d Co conc.		
	779. 944	Doped Co ²⁺ 2p _{3/2} principal peak	18.605		3.43						
	794. 749	Doped Co ³⁺ 2p _{1/2} principal peak			3.43	1416 019					
Со	776. 473	Doped Co ³⁺ 2p _{3/2} principal peak	18.270	+3	3.43	1410.018	14.8% of the total Co				
	806. 047	Doped $Co^{2+} 2p_{1/2}$ satellite peak	22 422	10	2.453	647 550	conc.				
	783. 625	Doped $Co^{2+} 2p_{3/2}$ satellite peak	22.422	τZ	3.638	047.330					
_	795. 808	Doped- precipitat ed out Co ₃ O ₄ 2p _{1/2} principal peak	-		2	854.938					

		800. 859	combinat ion of x- ray energy loss of doped Co 2p _{3/2} and satellite of Co ₃ O ₄			4.914							
		791. 948	X-ray satellite correspo nding to doped Co 2p _{1/2} state			3.364							
		773. 298	X-ray satellite correspo nding to doped Co 2p _{3/2} state			2.6							
				Sn 3	3d Core			25.67	43.99	56%	0.20	0.0	0.3
		486. 588	Lattice Sn 3d _{5/2} in SnO ₂	8 4 1	+4	1.81	55583,824	% of the total	% of the	Of the total	232	720 1	482 0
		494. 998	Lattice Sn 3d _{3/2} in SnO ₂	0.11		1.01		Co conc.	dope d Co conc	dope d Co conc			
		484. 527	3d _{5/2} of Sn:			1.6	4002.329						
	Sn	478. 108	$\begin{array}{c} Mg \cdot K_{\alpha 3} \\ X \cdot ray \\ satellite \\ peak \\ w.r.t \\ SnO_2 \\ 3d_{5/2} \end{array}$			1.8							
0.040		476. 329	Mg-K _{α4} X-ray satellite peak w.r.t SnO ₂ 3d _{5/2}			1.5							
				0 1	Ls Core								
		529. 925	O ²⁻ in SnO ₂ lattice	-	-2	1.7	102525.176						
	0	531. 625	Surface dangling bonds	-		1.7	20742.954						
		520. 021	Mg-K _{α4} X-ray satellite			1.7							

		peak				
		w.r.t				
		lattice				
		Ω^{2-} in				
		SrO.				
		$M \approx K$				
		$\mathbf{Wig} - \mathbf{K}_{\alpha 3}$				
		A-ray				
	501	satellite				
	521.	peak			1.7	
	636	w.r.t				
		lattice				
		O ²⁻ in				
		SnO ₂				
	1					
			Co	2p Core		
		Doped				
	799.	$Co^{2+}2p_{1/2}$			2 5 1	
	438	principal			5.51	
		peak	19.07			1025 122
		Doped	18.95	+2		1935.133
	780.	$Co^{2+} 2n_{3/2}$				
	488	principal			3.509	
		peak				
	798.	Doped			1	
		$Co^{3+} 2n_{1/2}$				
	288	principal			3.51	
	200	neak		18.605		
	780.	Doned		+3		2462.973
		$Co^{3+}2^{-2}$	10.00			
		2p _{3/2}	18.08		3.51	
	208	principal				
		peak				
	0.0-	Doped				
	805.	$Co^{2+} 2p_{1/2}$			3.145	
_	776	satellite		20.811	0.110	
Со		peak		 		1532 232
		Doped		± 2		1552.252
	784.	$Co^{2+} 2p_{3/2}$	_		1 161	
	965	satellite	-		4.464	
		peak				
		Doped-				
		precipitat				
		ed out				
	795.	$C_{02}O_{4}$	_		21	2048.912
	735	$2\mathbf{p}_{12}$	-		2.1	
		2p1/2				
		principal				
		peak				
		combinat				
		ion of x-				
		ray				
	901	energy				
	001. 005	loss of			3.459	
	823	doped Co				
		$2p_{3/2}$ and				
		satellite				
		of $C_{02}O_4$				
		01 00304		1	1	1

792. 625	X-ray satellite correspo nding to doped Co 2p _{1/2} state		4.18				
776. 525	X-ray satellite correspo nding to doped Co 2p _{3/2} state		2.638				

Table S2: Rietveld refinement parameters and important results of the $Sn_{1-x}Co_xO_2$ nanocrystals.

Dop	oing	Wyckoff	f Parameters	Normalised	Bond	Average	Lattice P	arameters		
Concen (x Consti	ntration)/ tuents	Wyckoff Site	Wyckoff Positions (x, y, z)	(w.r.t. 1) Site Occupancy	Lengths (in nm)	Crystallite Size (in nm)	a = b (in nm)	c (in nm)	d _{hkl} (in nm)	χ^2
x = 0.000	Sn ⁴⁺	2a	$\begin{array}{l} x = 0.00000 \\ y = 0.00000 \\ z = 0.00000 \end{array}$	0.986	$\begin{array}{c} d_{O-Sn}^{axial} \\ = 0.20062 \end{array}$	D _{S-S} = 11.42125	From Rietveld = 0.47381	From Rietveld = 0.31868	$d_{110} = 0.33503$	4.16
(Co _{0.0})	O ²⁻	4f	$\begin{array}{l} x = 0.29809 \\ y = 0.29809 \\ z = 0.00000 \end{array}$	0.903	$d_{0-Sn}^{equatorial} = 0.20846$	TEM = 11.01nm	(σ = 2.03973E -4)	(σ = 9.43679E -6)	$d_{101} = 0.26443$	
	Sn ⁴⁺	2a	$\begin{array}{l} x = 0.00000 \\ y = 0.00000 \\ z = 0.00000 \end{array}$	0.995	daxial		From Rietveld	From Rietveld	$d_{110} = 0.33507$	
x = 0.005 (Co _{0.5})	Co ²⁺	2a	$\begin{array}{l} x = 0.00000 \\ y = 0.00000 \\ z = 0.00000 \end{array}$	0.0049	= 0.20116	D _{S-S} = 9.12197	= 0.47387 (σ =	= 0.31871 (σ=	$d_{101} =$	4.05
	O ²⁻	4f		0.912	$\frac{d_{O-Sn}^{equatorial}}{= 0.20888}$		2.03973E -4)	9.43679E -6)	0.20440	
	Sn ⁴⁺	2a	$\begin{array}{l} x = 0.00000 \\ y = 0.00000 \\ z = 0.00000 \end{array}$	0.972			From	From	a _	
x = 0.020 (Co ₂₀)	Co ²⁺	2a	$\begin{array}{l} x = 0.00000 \\ y = 0.00000 \\ z = 0.00000 \end{array}$	0.028	$d_{O-Sn}^{axial} = 0.19599$	$D_{S-S} =$	Rietveld = 0.47364 (σ =	Rietveld = 0.31869 (σ =	$d_{110} = 0.33491$ $d_{101} = 0.26140$	4.02
	O ²⁻	4f		0.936	$d_{O-Sn}^{equational} = 0.2114$	8.2434	2.03973E -4)	9.43679E -6)	0.26440	
	Sn ⁴⁺	2a	$\begin{array}{l} x = 0.00000 \\ y = 0.00000 \\ z = 0.00000 \end{array}$	0.969	daxial	D _{S-S} =	From Rietveld	From Rietveld	$d_{110} = 0.33497$	
	Co ²⁺	2a	$\begin{array}{l} x = 0.00000 \\ y = 0.00000 \\ z = 0.00000 \end{array}$	0.030	= 0.18142	7.71157 From TEM =	= 0.47372 (σ =	= 0.31870 (σ =	$d_{101} = 0.26442$	3.87
	O ²⁻	4f	$\begin{array}{l} x = 0.29866 \\ y = 0.29866 \\ z = 0.00000 \end{array}$	0.949	$a_{0-Sn} = 0.21043$	7.58 nm	2.03973E -4)	9.43679E -6)	0.20442	

	Sn ⁴⁺	2a		0.959	daxial		From Rietveld	From Rietveld	$d_{110} =$	
x = 0.040 (Co _{4.0})	Co ²⁺	2a	$\begin{array}{l} x = 0.00000 \\ y = 0.00000 \\ z = 0.00000 \end{array}$	0.040	= 0.19266	D _{S-S} = 7.34007	= 0.47335 (σ=	= 0.31870 (σ=	$d_{101} =$	3.90
	O ²⁻	4f		0.986	$\begin{vmatrix} d_{O-Sn} \\ = 0.21347 \end{vmatrix}$		2.03973E -4)	9.43679E -6)	0.20430	

Table S3: Observed modes in Raman spectra of the $Sn_{1-x}Co_xO_2$ nanocrystals.

S/No.	Mode Identification as in fig. 10	Raman Shift (in cm ⁻¹)	Mode Description
01.	A_{1g}	633.32 - 631.84 (red shift)	A classical first order Raman mode $({}^{1}\Gamma_{1}{}^{+})$
02.	B_{1g}	188.28 - 182.16 (red shift)	A classical first order Raman mode $({}^{1}\Gamma_{3}^{+})$
03.	B_{2g}	776.59 - 758.96 (red shift)	A classical first order Raman mode $({}^{1}\Gamma_{4}{}^{+})$
04.	Eg	452.52 - 460.09 (blue shift)	A classical first order Raman mode $({}^{2}\Gamma_{5})$
05.	S1	249.59 - 243.60 (red shift)	A Disorder Activated Raman Mode (${}^{2}\Gamma_{5}^{+}(1)$ TO)
06.	S2	267.33 - 260.89 (red shift)	A Disorder Activated Raman Mode (${}^{2}\Gamma_{5}^{+}(1)$ LO)
07.	S3	316.87 - 299.68 (red shift)	A Disorder Activated Raman Mode (${}^{2}\Gamma_{5}^{+}(2)$ TO)
08.	S4	332.95 - 317.55 (red shift)	A Disorder Activated Raman Mode (${}^{2}\Gamma_{5}^{+}(2)$ LO)
09.	S5	359.29 - 355.90 (red shift)	A Second Order Raman Mode corresponding to classical first order Raman mode ${}^{1}\Gamma_{3}^{+}$
10.	S 6	606.27 - 603.10 (red shift)	A Disorder Activated Raman Mode (${}^{2}\Gamma_{5}^{+}(3)$ TO)
11.	S7	715.07 – 723.19 (blue shift)	A Disorder Activated Raman Mode (${}^{1}\Gamma_{1}$ LO)

Table S4: Observed Bands in the FTIR spectra of the $Sn_{1-x}Co_xO_2$ nanocrystals.

S/No.	Wave number (in cm ⁻¹)	Band Description
01	627.62 620.16 (red shift)	Classically IR active TO ${}^{2}\Gamma_{5}^{+}(3)$ (E _u (3)) mode (SnO asymmetric
01.	027.02 = 020.10 (red shift)	stretching vibrations in (xy0)-plane)
02	480.06 474.74 (rad shift)	Classically IR active TO ${}^{1}\Gamma_{1}$ (A _{2u}) mode (SnO asymmetric
02.	480.90 - 474.74 (led sillit)	stretching vibrations along z-axis)
02	520.05 522.16 (rad shift)	Disorder activated IR ${}^{1}\Gamma_{4}(2)$ (B _{1u} (2)) mode (Atomic
03.	329.93 - 322.10 (led shift)	displacements along z axis)
04.	$\approx 1100 \text{ cm}^{-1}$	Sn-OH asymmetric stretching vibrations
05.	$\approx 1384 \text{ cm}^{-1}$	Impurities in host KBr
06.	$\approx 1634 \text{ cm}^{-1}$	Bending vibrations of surface adsorbed H-O-H group
07	$\sim 2245 \text{ am}^{-1}$	Asymmetric stretching vibrations of surface adsorbed CO ₂
07.	~ 2343 CIII	molecules
08	$\sim 3405 \text{ cm}^{-1}$	Asymmetric stretching vibrations of surface adsorbed hydroxyl
08.	~ 5405 CIII	(-OH) group

Table S5: Band Gap, Hump energy and Urbach energy of the $Sn_{1-x}Co_xO_2$ nanocrystals.

Co Doping Concentration (x)	Band Gap (Eg ^{alw}) (in eV)	Band Gap (Eg for) (in eV)	Urbach Energy (E _u) (in eV)
0.000	3.69121	3.09632	0.25562
0.005	3.56065	2.8611	0.34344
0.020	3.53165	2.67604	0.39414

0.030	3.448	2.60699	0.44367
0.040	3.34309	2.46115	0.46242

Table S6: Room temperature PL	peaks of the Sn _{1-x} Co _x O ₂ na	anocrystals along with t	heir possible origin.
1	1		1 0

Co Doping Concentration (x)	Peak Designation	Peak Wavelength	Region of EM Spectrum	Possible origin of Peak
		(in nm)		
0	1	372.645	UV	eA ⁰ transition
	2	381.845		eA ⁰ -LO
	3	423.542	Visible (Violet)	Vo ^x to A ⁰ transition
	4	435.201		
	5	446.188		
	6	460.313	Visible (Blue)	$\begin{array}{c} \text{CBM to V}_{O} \\ \text{And CBM to} \\ E_{s} \end{array}$
	7	486.771		
	8	496.860	Visible (Green)	Shallow trap states (V ₀ ^x) to E _s
	9	508.520		
	10	519.730		
	11	529.820		
	1	373.359	UV	eA ₀ transition
0.005	2	381.929		eA ⁰ -LO
	3	422.118	Visible (Violet)	V ₀ ^x to A ₀ transition
	4	428.102		
	5	441.179		
	6	462.012	Visible (Blue)	$\begin{array}{c} \text{CBM to V}_{\text{O}} \\ \text{And CBM to} \\ E_{\text{s}} \end{array}$
	7	486.835		
	8	494.813	Visible (Green)	C1 11
	9	506.560		Shallow trap
	10	518.085		states (V_0^*) to E_s
	11	529.388		
	12	390.501	UV	eA ⁰ -2LO
0.02	1	370.866	UV	eA ₀ transition
	2	382.098		eA ⁰ -LO
	3	422.484	Visible (Violet)	V_0^x to A_0 transition
	4	430.139		
	5	442.388		
	6	459.667	Visible (Blue)	$\begin{array}{c} \text{CBM to V}_{0} \\ \text{And CBM to} \\ E_{s} \end{array}$
	7	487.007		
	8	499.037	Visible (Green)	Shallow tran
	9	510.629		$\int Shahow trap $
	10	520.909		$t_0 F$
	11	530.314		
	12	393.332	UV	eA ⁰ -2LO

0.03	1	371.808	UV	eA ₀ transition
	2	382.148		eA ⁰ -LO
	3	423.670	Visible (Violet)	V. X. L. A
	4	431.205		V_0^{Λ} to A_0 transition
	5	444.503		
	6	461.569	Visible (Blue)	CDM / U
	7	486.170		CBM to V ₀
				And CBM to
	8	495.478	Visible (Green)	Shallow trap states (V_0^x) to E_s
	9	507.003		
	10	518.306		
	11	529.388		
	12	392.612	UV	eA ⁰ -2LO
0.04	1	373.138	UV	eA ₀ transition
	2	382.183		eA ⁰ -LO
	3	422.783	Visible (Violet)	V_0^x to A_0 transition
	4	430.319		
	5	443.173		
	6	461.569	Visible (Blue)	CBM to Vo
	7	485.726		
				And CBM to E_s
	8	493.484	Visible (Green)	G1 11
	9	505.008		Shallow trap
	10	515.425		states (V_0^{A})
	11	529.388		to E _s
	12	391.604	UV	eA ⁰ -2LO
	13	520.079	Visible	

Fig. S1: Deconvoluted spectra of $Sn3d_{5/2}$ for $Co_{2.00}$ (x = 0.02) and $Co_{4.00}$ (x = 0.04) nanocrystals.

Fig. S2: Size-strain plots of the $Sn_{1-x}Co_xO_2$ nanocrystals to estimate the average crystallite size D_{S-S} and average lattice strain \mathcal{E}_{S-S} .

Fig. S3: Variation of direct allowed (E_g^{alw}) and direct forbidden (E_g^{for}) energy gaps of the $Sn_{1-x}Co_xO_2$ nanocrystals with Co doping concentration.