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Expanded in situ resonance methodology 

In situ resonance was conducted within a dual-beam scanning electron microscope (SEM), focused ion-

beam system (FEI Quanta 200 3D). The electrostatic probe (ESP) was constructed in-house and an 

Agilent 33500B was utilised to produce the AC/DC signal. A feedthrough was utilised to allow for the 

connection of the external control and measurement devices to the experimental setup within the 

chamber. The ESP was brought into close proximity to the target nanowire (NW) and an AC voltage 

(with possible DC offset) was applied to the ESP. The application of a voltage produces a charge build 

up on the ESP and a complimentary charge build up in the target NW, producing an electrostatic force. 

Thus, through this technique, a cyclic voltage applied to the ESP via the function generator produces a 

cyclic force of controllable frequency (ranging from 1 Hz to 20 MHz) and magnitude. This allows for 

fine control of the forcing frequency across a large frequency range necessary for the analysis of 

dynamic properties. 

A key consideration of this method is the force, F(t), between the ESP and target NW which can be 

estimated from: 

𝐹(𝑡) = 𝛼𝛽 (𝑉𝐷𝐶 + 2𝑉𝐷𝐶𝑉𝐴𝐶 cos𝜔𝑡 +
1
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𝑉𝐴𝐶

2 ) (1) 

where 𝛼 is a geometric constant, 𝛽 is a proportional constant, 𝑉𝐴𝐶 and 𝑉𝐷𝐶 are the AC and DC voltage 

respectively, 𝜔 is the frequency of the AC voltage at the ESP and 𝑡 is the time variable.1 At this stage, 

it is important to recognise that the forcing function produces components acting at both the driving 

frequency (ω) and driving frequency double (2ω). 

To locate the resonant frequencies of the target NWs, a frequency sweep was performed. In 

order to ensure that we are correctly recording the driving frequency and not its double we test at both 

×0.5 and ×2 identified frequencies. Additionally, it is important to consider the effect of parametric 
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excitation which can cause resonance at a fraction of the natural frequency (2ωn/i, i = 1, 2, 3…).2 

According to earlier work from Chen et al.,3 parametric excitation dominates when the ESP is collinear 

to the sample, while forced excitation dominates when the ESP is transverse to the sample; as such we 

follow these recommendations to avoid parametric excitation. In tests where the resonant spectrum was 

desired, a frequency sweep was performed and a video micrograph was recorded. The frequency-

amplitude spectrum was then extracted through our in-house image processing code. 

Video micrographs of resonating nanowires 

The following videos are provided as supporting information.  V1 shows a NW resonating with an 

asymmetric resonant profile due to non-linear effects which present a large driving voltages.  V2 shows 

a NW resonating with a typical symmetric resonant profiles. 

• V1: Asymmetric resonant profile 

• V2: Typical symmetric resonant profile 

Comparison of damping effects and quality factor 

In a nanoresonator, the main contributors to damping are thermos-elastic damping (TED), gas damping, 

fixture effects and surface effects.4  In this work, it is argued that the main contributor to damping is the 

surface effect, and thus the other contributors are negligible.  To demonstrate this, consider an indicative 

GaAs NW in line with the NWs present in this work.  Here a uniform cross-section NW with a length 

of 15 µm, a diameter of 300 nm and a Young’s modulus of 200 GPa is considered.  A NW such as this 

will have a first mode resonant frequency of 1144 kHz. 

Thermo-elastic damping 

Thermo-elastic damping is caused by a coupling of the mechanical stress field and the temperature 

field.  Zener’s5 model says that the QF contribution due to TED is: 

𝑄𝑇𝐸𝐷
−1 =

𝐸𝛼𝑇0

𝐶𝑝

𝜔𝜏𝑧

1 + (𝜔𝜏𝑧)
2
 (2) 

where 𝐸 is the Young’s modulus, 𝛼 is the coefficient of thermal expansion, 𝑇0 is the temperature, 𝐶𝑝 

is the heat capacity per unit volume at constant pressure, 𝜔 is the frequency, and 𝜏𝑧 = 𝑏2/(𝜋2𝜒) is 

the relaxation time, where 𝑏 is the beam diameter, and 𝜒 is the thermal diffusivity. 

For GaAs, 𝛼 = 6.4 × 10−6 K-1, 𝐶𝑝 = 1.78 × 106/m-3/K-1 and 𝜒 = 2.45 × 10−5 m2/s6.  

Utilising a temperature of 300 K the approximate contribution to QF from TED becomes 𝑄𝑇𝐸𝐷 =

2.74 × 105.  As this is much larger that the QF of this measured samples, it can be concluded that the 

contribution due to TED. 



Gas damping 

Under low pressures, gas damping is caused by the momentum transfers from gas molecules colliding 

with the resonator – this is known as the molecular regime.  The molecular regime occurs when the 

mean free path of the gas molecules is larger than the resonator amplitude.4  Under these conditions, 

the damping due to the surrounding gas is given by:4,7 

𝑄𝑔𝑎𝑠
−1 ≈

𝑝𝐴

𝜔𝑛𝑚𝑒𝑓𝑓𝑣
 (3) 

where 𝑝 is the pressure, 𝐴 is the lateral surface area, 𝜔𝑛 is the resonant frequency, 𝑚𝑒𝑓𝑓 is the 

resonator mass, and 𝑣 is the gas molecule thermal velocity define as 𝑣 = √𝑘𝐵𝑇/𝑚, where 𝑘𝐵 is the 

Boltzmann’s constant, 𝑇 is the temperature, and 𝑚 is the gas molecular mass. 

Assuming a molecular mass of 29 g/mol, a temperature of 300 K and a pressure of 5 mPa, 

which was the maximum pressure during resonance, the damping due to gas is approximated at 

𝑄𝑔𝑎𝑠 = 5.28 × 108.  As the damping due to gas is much less than the measured QF, its contribution is 

deemed negligible. 

Fixture effects 

Photiadis and Judge8 show that for a rectangular cross-section resonator, the contribution from the 

fixture to QF can be approximate by: 

𝑄𝑓𝑖𝑥𝑡𝑢𝑟𝑒
−1 ≈ 0.31

𝑤

𝑙
(
ℎ

𝑙
)
4

 (4) 

where 𝑤, ℎ and 𝑙 are the beam width, height and length respectively. While the NWs in this work are 

circular in cross-section, this can give an approximation of QF.  Using a wost case analogy, we let 𝑤 

and ℎ be equivalent to the NW diameter.  From this, the contribution of Q from the fixture becomes 

𝑄𝑓𝑖𝑥𝑡𝑢𝑟𝑒 ≈ 1.01 × 109.  As the contribution of fixture effects to QF is much larger than the QF of 

measured samples, its contribution is negligible. 

Combined effect analysis 

Contributions to QF summate inversely, such that the total is given by 𝑄−1 = 𝑄𝑡ℎ𝑒𝑟𝑚𝑜−𝑒𝑙𝑎𝑠𝑡𝑖𝑐
−1 + 𝑄𝑔𝑎𝑠

−1 +

𝑄𝑓𝑖𝑥𝑡𝑢𝑟𝑒
−1 + 𝑄𝑠𝑢𝑟𝑓𝑎𝑐𝑒

−1 + ⋯.9  In this work, QF was measured to be between 442 – 3156, which is much 

less than the QF of the above calculated contributors from theoretical models.  Due to this, and due to 

the inverse summation nature of QF, these contributors can be deemed negligible and thus it is 

concluded that the major contributor to QF in this work is the surface effect.  Furthermore, while 

theoretical models of surface effects are yet to be developed, the QF due to surface effects is known to 

be proportional to the volume to surface-area ratio.7  This is in line with other literature which has found 



that for NW resonators, QF is dominated by surface effects, due to the high volume to surface-area 

ratio.10  In addition, as damping due to SFs would manifest through TED, it can be further concluded 

that SFs do not significantly effect QF. 

Stiffness tensor comparison of zinc blende and wurtzite GaAs 

In this work we characterise the core and shell Young’s modulus of zinc blende (ZB) GaAs NWs, which 

we compare to wurtzite (WZ) GaAs NWs.  To support this, we compare below the predicted Young’s 

modulus of ZB and WZ GaAs as derived from their stiffness tensors. 

Zinc Blende 

Zinc blende is a cubic crystal system, as such its stiffness tensor (𝐶𝑍𝐵,𝑖𝑗) is of the form: 

 

[𝐶𝑍𝐵,𝑖𝑗] =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶12 0 0 0
𝐶12 𝐶11 𝐶12 0 0 0
𝐶12 𝐶12 𝐶11 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 𝐶44]

 
 
 
 
 

 (2) 

where the elastic constants are 𝐶11 = 124.2 GPa, 𝐶12 = 51.4 GPa, 𝐶44 = 63.4 GPa 11. 

The directional Young’s modulus (𝐸) of a cubic system can be calculated from:12 

1

𝐸
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where 𝑆𝑖𝑗 are the constants of the compliance tensor where the compliance tensor is the inverse of the 

stiffness tensor (𝑆𝑖𝑗 = inv(𝐶𝑖𝑗)), and 𝑙1, 𝑙2, and 𝑙3 are the relevant cosines for the direction of interest. 

ZB GaAs NWs grow in the [111] direction, thus the elastic modulus in the growth direction is 

defined by the (𝑙1, 𝑙2, 𝑙3) = (0.577, 0.577, 0.577) and thus the theoretical Young’s modulus of ZB 

GaAs NWs in the growth direction can be calculated to be 149 GPa. 

Wurtzite 

Wurtzite is a hexagonal crystal system, as such its stiffness tensor (𝐶𝑊𝑍,𝑖𝑗) is of the form: 

 

[𝐶𝑊𝑍,𝑖𝑗] =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶11 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶44 0
0 0 0 0 0 (𝐶11 − 𝐶12)/2]

 
 
 
 
 

 (1) 

where the elastic constants 𝐶11 = 147.6 GPa, 𝐶12 = 46 GPa, 𝐶13 = 33.4 GPa, 𝐶44 = 42.2 GPa.11 



WZ GaAs NWs are grown in the [001] direction, and thus their Young’s modulus in the growth 

direction is equivalent to the Young’s modulus in the z-direction of the tensor.  The Young’s modulus 

in the z-direction is defined as 1/𝑆33, and thus the theoretical Young’s modulus of WZ GaAs NWs in 

the growth direction can be calculated to be 149 GPa; the same as for ZB GaAs NWs. 
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