Supplementary Information

Rapid reaction of MoS₂ nanosheets with Pb²⁺ and Pb⁴⁺ ions in solution

Biswajit Mondal,[†] Ananthu Mahendranath,[†] Anirban Som, Sandeep Bose, Tripti Ahuja, Avula

Anil Kumar, Jyotirmoy Ghosh and Thalappil Pradeep*

DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of

Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

*E-mail: pradeep@iitm.ac.in

Table of contents

Number	Description	Page No.
<u>S1</u>	Concentration-dependent UV/Vis spectra	2
<u>S2</u>	Time-dependent UV/Vis spectra	3
\$3	TEM images and photographs of the control experiment showing the size effect of $MoS_2 NSs$.	4
S4	PXRD pattern of hydrothermally treated reaction product at various temperatures.	5
\$5	TEM intensity map of the final reaction product	6
S6	XPS survey spectrum of the final product	7
S7	Photograph of the reaction mixture at various pH	8
<u>\$8</u>	S8 Ion current vs time plot for N_2^+ and NO_2^+	
Table 1	Table 1 List of removal capacities of the materials published recently	

S1. Supplementary Information 1

Fig. S1 Concentration-dependent UV/Vis spectra taken after 6 h of reaction. Lead acetate concentration varied from 23 mM, 46 mM, 69 mM to 92 mM keeping the MoS_2 concentration constant (4 mL, 4.2 mM).

Fig. S2 Time-dependent UV/Vis spectra taken up to 5 h from immediately after the addition of lead acetate for the lowest concentration of lead acetate (23 mM).

S3. Supplementary Information 3

Fig. S3 (A) Photographs of the reaction mixture before (i) and after (ii) the addition of lead ions, respectively. (B-C) TEM images showing $MoS_2 NS$ contains 5-8 layers of nanosheets. The MoS_2 dispersion containing 3-5 layers of nanosheets corresponding TEM images shown in (E-F), shows a clear reaction [D (i)] after the addition of lead ions. The method of preparation of these samples is described in the experimental section.

Fig. S4 The PXRD pattern of the reaction product $(MoS_2 + Pb^{2+})$ after hydrothermal treatment at various temperatures.

S5. Supplementary Information 5

Fig. S5 TEM intensity map showing the presence of all the expected elements (Pb, Mo, O, and S) for the reaction product $(MoS_2 + Pb^{2+})$ after hydrothermal treatment at 190°C for 24 h.

Fig. S6 XPS survey spectrum of the final product. No extra peak in the survey spectrum confirmed the absence of impurities.

S7. Supplementary Information 7

Fig. S7 Photographs of the reaction mixture at various pH showing the spontaneity of the reaction in basic medium. After successful reaction the pH was reduced (for 11.6 to 11.4).

S8. Supplementary Information 8

Fig. S8 Ion current vs time plot showing the evolution of NO_2 gas during the reaction of MoS_2 NSs with $Pb(NO_3)_2$.

Table 1.

The removal capacities of other materials for lead published elsewhere are listed below.

Adsorbents	$q_{\rm max}$ (mg/g)	Link to References
Fe ₃ O ₄	22	1
Oxalate-loaded hematite	50	2
Activated carbon prepared from cherry kernels	180.3	3
Salix matsudana activated carbon	59.01	4
Multiwalled carbon nanotubes	97.08	5
MnO ₂	139.28	6
NiO	909.0	7
Fe ₃ O ₄	53.1	8
Al ₂ O ₃	114.6	9
TiO ₂	49.4	9
CeO ₂	9.2	10
WO ₃ ·H ₂ O	315.0	11
γ-ΑLΟΟΗ	124.2	12
α-FeOOH	80.0	13
Mg(OH) ₂	775.4	14

References

- 1. C. Zhang, Z. Yu, G. Zeng, B. Huang, H. Dong, J. Huang, Z. Yang, J. Wei, L. Hu and Q. Zhang, *Chemical Engineering Journal*, 2016, **284**, 247-259.
- 2. N. Khorshidi and A. Azadmehr, *Separation Science and Technology*, 2016, **51**, 2122-2137.
- 3. S. Pap, J. Radonić, S. Trifunović, D. Adamović, I. Mihajlović, M. Vojinović Miloradov and M. Turk Sekulić, *Journal of Environmental Management*, 2016, **184**, 297-306.

- 4. Y. Shu, K. Li, J. Song, B. Li and C. Tang, *Water Science and Technology*, 2016, 74, 2751-2761.
- 5. Y.-H. Li, J. Ding, Z. Luan, Z. Di, Y. Zhu, C. Xu, D. Wu and B. Wei, *Carbon*, 2003, **41**, 2787-2792.
- 6. Y. Guo, H. Guo, Y. Wang, L. Liu and W. Chen, *RSC Advances*, 2014, 4, 14048-14054.
- 7. T. Sheela and Y. A. Nayaka, *Chemical Engineering Journal*, 2012, **191**, 123-131.
- 8. S. Rajput, C. U. Pittman and D. Mohan, *Journal of Colloid and Interface Science*, 2016, **468**, 334-346.
- 9. S. Mahdavi, M. Jalali and A. Afkhami, *Chemical Engineering Communications*, 2013, 200, 448-470.
- 10. C.-Y. Cao, Z.-M. Cui, C.-Q. Chen, W.-G. Song and W. Cai, *The Journal of Physical Chemistry C*, 2010, **114**, 9865-9870.
- 11. B. Liu, J. Wang, J. Wu, H. Li, Z. Li, M. Zhou and T. Zuo, *Journal of Materials Chemistry A*, 2014, **2**, 1947-1954.
- 12. Y.-X. Zhang, Y. Jia, Z. Jin, X.-Y. Yu, W.-H. Xu, T. Luo, B.-J. Zhu, J.-H. Liu and X.-J. Huang, *CrystEngComm*, 2012, **14**, 3005-3007.
- 13. M. Liu, Y. Wang, L. Chen, Y. Zhang and Z. Lin, ACS Applied Materials & Interfaces, 2015, 7, 7961-7969.
- 14. B. Wang, H. Wu, L. Yu, R. Xu, T.-T. Lim and X. W. Lou, *Advanced Materials*, 2012, **24**, 1111-1116.