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CONVERTION FROM BRILLOUIN FREQUENCY TO SOUND VELOCITY FOR

A COMPACTED POROUS NANOPOWDER

The Brillouin frequency of the nanopowder can be expressed as:

νB(φ, P ) =
2VL(φ, P )neff(φ, P )

λ
(1)

where λ is the optical wavelength, neff(φ, P ) is the effective refractive index of the powder

and VL(φ, P ) is the sound speed. These quantities are mainly dependent on two variables:

the applied pressure P and porosity φ. Both vary during a compression cycle. We assume in

the following that in the GPa pressure range the minimum porosity for a disordered packing

φmin=0.36 is reached. Deducing the longitudinal sound speed from the Brillouin frequency

thus requires to know the effective refractive index downshifted due to the amount of air

with volume fraction φmin in the powder. This can be done thanks to an effective medium

theory such as Maxwell-Garnett model for a bi-component medium (m–air) with m = TiO2

or ZrO2:

neff(φ, P ) = neff(φmin)

= nm

√
1 + 2n2

m + 2φmin(1− n2
m)

1 + 2n2
m − φmin(1− n2

m)
(2)

where nm is the refractive index of the matrix of bulk TiO2 or ZrO2. Using this expression

we obtain neff(φmin) = 2.1 for TiO2 and neff(φmin) = 1.8 for ZrO2. The Brillouin frequency

now writes:

νB(P ) =
2VL(φmin, P )neff(φmin)

λ
(3)

and it only depends, for high pressures when φmin is constant, on the pressure dependence of

the powder sound speed VL(φmin,P) that can be estimated from the Hertz-Mindlin description

of the inter-grain contact.

TIO2 - COMPARISON WITH THE BULK

TiO2 nanopowder Brillouin spectra at various stages of the compression are shown in

figure 1.A and data from two distincts runs are compared in figure 1.B with the sound

speeds measured from a bulk single crystal of TiO2 anatase under pressure with our high-P
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FIG. 1. A. Brillouin spectra of TiO2 nanopowder as a function of applied pressure. The spectra

are vertically shifted and the Rayleigh line has been omitted for clarity. B. Comparison of anatase

nanopowder sound speed with the one measured from a bulk crystal of anatase. Two runs are

presented from HT1 and HT7 nanopowders.

Brillouin setup. The longitudinal Brillouin frequencies were measured only below the struc-

tural phase transition towards the colombite structure at 5 GPa, and converted to sound

speed. The black line is a linear extrapolation of the low pressure points. TiO2 nanocrystals

don’t transit to the colombite phase and keep the tetragonal structure even at high pressure,

as previously shown by some of us elsewhere [1–3]. The relatively small difference in sound

speed between the compacted nanopowder and the single crystal (12 % at 27 GPa) indicates

that at high pressures the elastic behavior of the powder becomes very similar to the bulk,

due to the high deformation of the NPs shape upon compression in the GPa pressure range.

This can be illustrated in the approximation of two interpenetrated spheres[4] by the large

change of interpenetration length of the NPs: δ = a2
HM/R which varies from 0.02 nm to 0.6

nm between 0.2 to 21.5 GPa (R = 1.8 nm).
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FIG. 2. Comparison of zirconia nanopowder sound speed with the calculations from Digby model

for different ratios a/R, a being the contact radius and R the NP radius.

DIGBY’S APPROACH FOR ADHESIVE CONTACTS

The Digby model gives effective moduli for a dry, random packing of identical elastic

spherical particles. Neighboring particles are initially firmly bonded across small, flat, cir-

cular regions of radius a. Outside these adhesion surfaces, the shape of each particle is

assumed to be ideally smooth. Notice that this condition differs from that of Hertz, where

the shape of a particle is not smooth at the intersection of the spherical surface and the

plane of contact. Digbys normal and shear stiffnesses under hydrostatic pressure P are :

Sn =
4µ0b

1− ν0

(4)

Sτ =
8µ0a

2− ν0

(5)

where ν0 and µ0 are the Poisson ratio and shear modulus of the grain material, respectively.

Parameter b can be found from the relation
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b

R
=

[
d2 +

( a
R

)2
]1/2

(6)

where d satisfies the cubic equation

d3 +
3

2

( a
R

)2

d− 3π(1− ν0)P

2C(1− φ)µ0

(7)

The coordination number C=9. Then, one must solve the cubic equation for d and take

the real root, neglecting the pair of complex conjugate roots. We obtain the values of a/R

and b/R which are used to compute Sn, Sτ and the sound speed. The results for different

values of a/R are summarized in figure 2, see main text for the discussion.

COMPARISON WITH OTHER RESULTS

In most Brillouin experiments on nanocrystallites, particularly under high pressure [5, 6],

the description of grain boundaries dynamics and local elasticity is systematically disre-

garded. Elastic stiffness is rather discussed in terms of grain size and porosity evolution on

the elasticity of nanocrystalline materials [7–9], often described within an effective medium

approach as the average between an upper (Voigt) and lower (Reuss) bounds. Our results

indicate that the static compression of NPs primarily depends on the NPs contact dynamics

and is not related to a possible pressure-induced change of NP size. This affirmation is jus-

tified by previous low-frequency Raman measurements of the Lamb modes of these TiO2[10]

and ZrO2[11] nanopowders. The frequencies of the quadrupolar and breathing modes of the

NPs barely change with applied pressure up to 20 GPa. These frequencies scale linearly with

the inverse NP diameter (νLamb ∝ VL/T/D), where VL/T is the longitudinal or transverse

sound speed. Low-frequency Raman is therefore a sensitive probe of possible NP size mod-

ification as well as small contact changes between interacting NPs as recently evidenced for

sintered nanopowders[12]. The absence of Lamb frequency variation with P demonstrates

that no NP size variation is involved in the observed non-linear dependence of the sound

speed in the nanopowder with P . We argue that it is neither an artifact due to a possible

pressure dependent refractive index behavior in the conversion from Brillouin frequency to

acoustic speed, as shown by the weak dependence of nZrO2 with applied pressure in the

GPa range [13]. Additionally, we show that the presence of a few monolayers solid ice shell

do not change the pressure power law of the effective elastic stiffnesses as predicted by De
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Gennes’s soft shell model [14], initialy developped to explain the exponant 1/2 arising from

a thin oxyde surface layer. Here we demonstrate that effective medium theories such as HM

theory allows to address the intergrain stifnesses of nanometric powders, and we highlight

the importance of subtle effects such as the adsorption of water molecules on the NPs

surface, and eventually the presence of organics, on their mechanical properties. Brillouin

scattering is demonstrated to be a powerfull alternative to conventional nanoindentation

[15, 16], acoustic echography and interferometry [17] or ultrasonic techniques [18] to study

the elasticity of nanoscale materials.

COMPLEMENTARY BRILLOUIN AND RAMAN RESULTS
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FIG. 3. Hysteresis of Brillouin frequency measured for A. TiO2 and B. ZrO2. Black symboles are

for upstroke and red for downstroke.
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FIG. 4. Raman spectra of TiO2 HT1 NPs, showing the vibrational signature of the organics at

about 3000 cm−1.
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