Supporting Information

Preparation of BiVO₄ nanoporous photoanode based on

peroxovanadate reduction and conversion for efficient

photoelectrochemical performance

Ligang Xia^a, Jinhua Li^a, Jing Bai^{a*}, Linsen Li^a, Qingyi Zeng^a, Baoxue Zhou^{a,b*}

^a School of Environmental Science and Engineering, Shanghai Jiao Tong University No. 800

Dongchuan Rd, Shanghai 200240, China.

^b Key Laboratory of Thin Film and Microfabrication Technology, Ministry of Education, Shanghai 200240, PR China

Fig. S1 SEM images of V₂O₅•xH₂O films deposited for 2h (a) and 4h (b), and the corresponding converted BiVO₄ films prepared from V₂O₅•xH₂O film after annealing treatment: (c) 2h-BiVO₄, (d) 4h-BiVO₄.

^{*}Corresponding author. Tel: +86-21-5474 7351; Fax: +86-21-5474 7351.

E-mail: zhoubaoxue@sjtu.edu.cn (B. Zhou); bai_jing@sjtu.edu.cn (J. Bai)

Fig. S2 TEM image of the shuttle like $BiVO_4$ rod and the SAED pattern.

Fig.S3 XRD pattern of BiVO_4 film prepared from V_2O_5 film deposited for 2 h.

Fig. S4 XRD patterns of samples formed by the annealed $V_2O_5 \cdot xH_2O$ film with varied impregnation time by Bi^{3+} .

Fig. S5 Mott–Schottky plot for BiVO₄ photoanode prepared in this work.

Bare BiVO ₄	Electrolyte	Photocurrent	IPCE@400nm	Reference
		densiy(mAcm ⁻²)@1.23V	and 1.23V vs	
		vs RHE	RHE	
	Na ₂ SO ₄ (pH 6.6)	~1.5	~20%	[1]
	natural seawater	<0.5	~10%	[2]
	NaHCO ₃ (pH 8.5)	0.5-1.0	<20%	[3]
	Na ₂ SO ₄ (pH 7)	~0.4	<20%(Mo doped)	[4]
	Na ₂ SO ₄ (pH 7)	<1(@1.41 V)	-	[5]
	Na ₂ SO ₄ (pH 7)	<1	-	[6]
	KH ₂ PO ₄ (pH 7)	<0.5	<10%	[7]
	Na ₂ SO ₄ and PBS (pH 6.6)	0.5-1.0	20-25%(@1.59 V)	[8]
	Na ₂ SO ₄ (pH 6.8)	0.2(@1.0 V)	<10%	[9]
	PBS (pH=7)	<0.5	<20%	[10]
	PBS (pH=7)	0.5-1.0	<20%	[11]
	PBS (pH=7)	<1	-	[12]
	PBS (pH=7)	~1.5	-	[13]
	PBS (pH=7)	1.10	22.4%	This paper

Table S1 Comparison of PEC properties with BiVO₄ photoanodes reported in the literatures

Fig. S6 I-V curves of $BiVO_4$ electrodes measured in a 0.1 M phosphate buffer (pH 7) containing 0.1 M Na_2SO_3 as hole scavenger under AM 1.5G, 100 mW/cm² illumination (scan rate, 10 mV/s).

Fig. S7 Gas yield during water oxidation under AM 1.5G illumination at 1.23 V vs RHE.

Fig. S8 I-t curves of $BiVO_4$ photoanode at 1.23 V vs RHE under AM 1.5G illumination.

Fig. S9 SEM image of BiVO₄ film after 2 h stability test.

Supplementary references

[1] K. Sayama, A. Nomura, Z. Zou, R. Abe, Y. Abe and H. Arakawa, Chem. Commun., 2003, 35, 2908.

- [2] W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu and Z. Zou, Energy Environ. Sci., 2011, 4, 4046.
- [3] D. K. Zhong, S. Choi and D. R. Gamelin, J. Am. Chem. Soc., 2011, 133, 18370.
- [4] S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner and A. M. Herring, Energy Environ. Sci., 2011, 4, 5028.
- [5] N. Myung, S. Ham, S. Choi, Y. Chae, W.-G. Kim, Y. J. Jeon, K.-J. Paeng, W.
- Chanmanee, N. R. de Tacconi and K. Rajeshwar, J. Phys. Chem. C, 2011, 115, 7793.
- [6] L. H. Dall'Antonia, N. R. de Tacconi, W. Chanmanee, H. Timmaji, N. Myung and K. Rajeshwar, Electrochem. Solid-State Lett., 2010, 13, D29.
- [7] J. A. Seabold and K.-S. Choi, J. Am. Chem. Soc., 2012, 134, 2186.
- [8] H. He, S. P. Berglund, A. J. E. Rettie, W. D. Chemelewski, P. Xiao, Y. Zhang and C. D. Mullins, J. Mater. Chem. A, 2014, 2, 9371-9379.
- [9] J. Zhang, T. Wang, X. Chang, A. Li, J. Gong, Chem. Sci., 2016, 7, 6381-6386.
- [10]W. He, R. Wang, L. Zhang, J. Zhu, X. Xiang and F. Li, J. Mater. Chem. A, 2015, 3, 17977-17982.
- [11] Y. Tang, R. Wang, Y. Yang, D. Yan and X. Xiang, ACS Appl. Mater. Interfaces, 2016, 8, 19446-19455.
- [12] W. He, R. Wang, C. Zhou, J. Yang, F. Li and X. Xiang, Ind. Eng. Chem. Res., 2015, 54, 10723-10730
- [13] T. W. Kim and K. S. Choi, Science, 2014, 343, 990-994.