Supplementary Information

Large-area niobium disulfide thin films as transparent electrodes for devices

based on two-dimensional materials

Hunyoung Bark^a, Yongsuk Choi^a, Jaehyuck Jung^a, Jung Hwa Kim^c, Hyuckjoon Kwon^a, Jinhwan Lee^b, Zonghoon Lee^c, Jeong Ho Cho^a and Changgu Lee^{a,b*}

^a SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066
Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Korea
^b School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu,
Suwon, Gyeonggi-do, 16419, Korea
^c School of Materials Science and Engineering, Ulsan National Institute of Science and

Technology (UNIST), Ulsan 44919, Korea

*Correspondence: Professor C Lee, 85293, Cooperate collaboration center, Sungkyunkwan Univ., 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea 16419/ telephone: +82-31-299-4844/ Fax: +82-31-299-7930/ peterlee@skku.edu

NbS₂ film thickness

Figure S1. Atomic force microscopy (AFM) images of synthesized NbS₂ films with various thicknesses. (a,b,c) Topological images and (d,e,f) line profiles of 2-, 4-, and 8-layer NbS₂ films, respectively.

Device fabrication process

Figure S2. Schematic of the process used to fabricate an ion-gel gated MoS_2 FET with an NbS_2 electrode.

Photographic image of a fabricated device

Figure S3. Photograph of an array of ion-gel gated MoS_2 FETs using NbS_2 electrode. The inset shows an optical microscope image of a single device.