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S1 Langevin dynamics
This section describes the theory and results of stochastic simulations (Langevin dynamics) performed to validate and
compare to the results of the Fokker-Planck simulations.

To calculate the dynamic response, the torque (Eq. (11)) is equated to the viscous drag torque − frΩ, where Ω is the
angular velocity of the particle rotation and fr is the rotational friction coefficient, and a stochastic term is included in
the expression as

frΩ = τ +
√

2kBT frH , (S1)

where the inertia of the particle has been neglected. The rotational friction coefficient is related to the Brownian relax-
ation time as

τB =
fr

2kBT
(S2)

Due to the assumption of prolate particles, the rotation around the major axis (caused by random forces) does not
affect the properties of the dispersion (absorption/magnetisation). As a consequence and to simplify the treatment, the
inertia of rotation around the major axis can be assumed to be equal to the inertia of rotation around the minor axis. The
rotational friction coefficient for rotation of a prolate ellipsoid particle around the equatorial semiaxes is given by

fr =
2π

3
ηD3

h
p2

c

(1/pc)
2− (pc)

2

1−S[2− (1/pc)2]
(S3)

where η is the dynamic fluid viscosity, S = tanh−1 (ξ )/ξ and ξ =
√

p2−1/p. pc is the aspect ratio, calculated as the ratio
between major axis (diameter pcDh) and the minor axis (diameter Dh).1 For a sphere (pc = 1), the rotational friction
coefficient reduces to πηD3

h.

The last term in Eq. (S1) accounts for random forces. kB is Boltzmann’s constant. H is a white noise force, which
can be approximated numerically by a vector of Gaussian distributed random numbers with zero mean and unit standard
deviation W scaled by

√
∆t.2

Using de/dt = Ω× e and H = Hn, the change in the particle orientation of the particle can be found as

∆e
∆t

=
1

2τB

[
(β0 + γ0e ·n)(e×n× e)−2e

]
+

(
1

τB∆t

) 1
2

W× e (S4)

where the last term in the square bracket ensures convergence to Boltzmann equilibrium and conversion of magnetisation
when transformed from the Stratonovitch to the Ito calculus.3–5

All simulations below were performed for ensembles of 2 ·104 magnetic nanoparticles (MNPs) with a diameter of 100
nm dispersed in water at room temperature (T = 295K, η = 1mPa s).

S1.1 Validation of stochastic simulations

To test the validity of the stochastic simulations, we first simulated the demagnetisation of MNPs, all initially pointed
along the z-direction, using a time step of ∆t = 3 µs. The result is shown in Fig. S1a along with the theoretically expected
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exponential decay, M(t) = M(0)exp(−t/τB), with

τB =
3ηVh

kBT
. (S5)

The simulation results were found to agree with the theoretical expectation within 1 %. This agreement could be further
improved by increasing the number of particles in the simulation.

We further verified that the equilibrium value of the magnetisation agreed with that expected from Boltzmann statis-
tics (the Langevin function) at a number of fields and temperatures. Fig. S1b shows the simulation results as well as the
Langevin function. Again, the stochastic simulation results were found to agree with the Langevin function within 1 %,
concurring with the findings of Reeves and Weaver.2 This demonstrates the validity of the employed numerical scheme
to calculate the correct dynamic and equilibrium response of MNPs with a permanent magnetic moment.

Fig. S1 (a) Demagnetisation of 2 · 104 particles all initially pointing in the z direction. In the figure the fitted value of the exponential
decay (M(t) = M(0)exp(−t/τB) is shown. (b) Magnetisation of 2 ·104 random oriented particles at 300 K (green) 200 K (red) and 100 K
(blue). Points indicate the simulation results obtained at time t = 9τB, solid lines are the Langevin function. 2

S1.2 Comparison of stochastic simulations and Fokker-Planck simulations

Figure S2 compares the results for the AC susceptibility and the optomagnetic data obtained using stochastic simulations
and Fokker-Planck simulations. A good agreement between the methods is obtained both for low and high values of β0

and γ0.
For the stochastic simulations, the signal has to be averaged over many particles or periods to obtain a signal with low

noise. The Fokker-Planck simulation is insensitive to signal noise and consequently provides good results also for very
low γ0 and β0 values. On the other hand, for large values of γ0 or β0 the Fokker-Planck simulations have to be truncated
at high values of l and p for the problem to converge, and consequently the calculation takes longer time.

S2 Derivation of Fokker-Planck system of linear equations
In this section the details of the derivations of the Fokker-Planck results are shown. We have used fB = 1/(2πτB) in the
calculations.

First, defining x = cosθ , Eq. (16) is simplified to

∂ f
∂ t

=
1

2τB

∂

∂x

[
(1− x2)

(
∂ f
∂x
− (β0 cosωt + xγ0 cos2

ωt) f
)]

(S6)
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Fig. S2 Dynamic simulations (points) using 104 particles compared to Fokker-Planck simulations (solid lines). (a)-(d) red (β0 = 1,
γ0 = 0); blue (β0 = 1, γ0 = 1). (e)-(h) red (β0 = 100, γ0 = 0), blue (β0 = 100, γ0 = 100), cyan (β0 = 300, γ0 = 0), and green (β0 = 300,
γ0 = 300).

Using the orthogonality of the Legendre polynomials and that P0 = 1, the normalisation of f (x, t) gives∫ 1

−1
f (x, t)dt =

∞

∑
p=0

(
A0,p cos pωt +B0,p sin pωt

)
2 = 1 (S7)

Thus, A0,p = B0,p = 0, except for A0,0 =
1
2 , to ensure that f (x, t) is normalised for all t.

Inserting f (x, t) in Eq. (S6) we obtain

∂ f
∂ t

=
1

2τB
∑
l=0

Cl(t)
∂

∂x

[
(1− x2)

(
∂Pl(x)

∂x
− (β0 cosωt + xγ0 cos2

ωt)Pl(x)
)]

. (S8)

where the x dependence of the Legendre polynomials is implicit, i.e, Pl = Pl(x).
We consider the three terms separately and use the properties of the Legendre polynomials∗

∂

∂x

[
(1− x2)

∂Pl

∂x

]
=− l(l +1)Pl (S9)

∂

∂x

[
(1− x2)Pl

]
=

1
2l +1

∂

∂x

[
(1− x2)

∂

∂x

(
Pl+1−Pl−1

)]

=
1

2l +1

[
− (l +1)(l +2)Pl+1 + l(l−1)Pl−1

]
(S10)

∂

∂x

[
(1− x2)xPl

]
=

1
2l +1

∂

∂x

[
(1− x2)

(
(l +1)Pl+1 + lPl−1

)]

=
1

2l +1
∂

∂x

[
(1− x2)

∂

∂x

(
l +1

2l +3
(Pl+2−Pl)+

l
2l−1

(Pl −Pl−2)

)]

=
1

2l +1

(
l +1
2l +3

(−(l +2)(l +3)Pl+2 + l(l +1)Pl)+
l

2l−1
(−l(l +1)Pl +(l−2)(l−1)Pl−2)

)

=− (l +1)(l +2)(l +3)
(2l +1)(2l +3)

Pl+2−
(l +1)l

(2l +3)(2l−1)
Pl +

(l−2)(l−1)l
(2l +1)(2l−1)

Pl−2 (S11)

∗ From the Legendre differential equation, d
dx

[
(1− x2) d

dx Pl(x)
]
=−l(l +1)Pl(x), and the properties of differentiation, Pl(x) = 1

2l+1
d
dx

[
Pl+1(x)−Pl−1(x)

]
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Using the orthogonality of the Legendre polynomials, Eq. (S8) becomes

∂Cl(t)
∂ t

=
l(l +1)

2τB

[
−Cl(t)+β0 cosωt

(
1

2l−1
Cl−1(t)−

1
2l +3

Cl+1(t)
)
+

γ0 cos2
ωt
(

(l−1)
(2l−3)(2l−1)

Cl−2(t)+
1

(2l +3)(2l−1)
Cl(t)−

(l +2)
(2l +5)(2l +3)

Cl+2

)]
(S12)

From Eq. (S8) we also need to evaluate Cl(t)cosωt and Cl(t)cos2 ωt

Cl(t)cosωt =
1
2

∞

∑
p=0

Al,p
(

cos(p−1)ωt + cos(p+1)ωt
)
+Bl,p

(
sin(p−1)ωt + sin(p+1)ωt

)
(S13)

Cl(t)cos2
ωt =

1
4

∞

∑
p=0

Al,p
(
2cos pωt + cos(p−2)ωt + cos(p+2)ωt

)
+Bl,p

(
2sin pωt sin(p−2)ωt + sin(p+2)ωt

)
(S14)

Using Eqs. (S12), (S13) and (S14) we can write Eq. (S8) as a system of linear equations as

nωBl,p =
l(l +1)

2τB

[
−Al,p +

β0

2

(
1

2l−1
(
(1+δp,1)Al−1,p−1 +Al−1,p+1

)
−

1
2l +3

(
(1+δp,1)Al+1,p−1 +Al+1,p+1

))
+

γ0

4

(
(l−1)

(2l−3)(2l−1)
(
(2+δp,1)Al−2,p +(1+δp,2)Al−2,p−2 +Al−2,p+2

)
+

1
(2l +3)(2l−1)

(
(2+δp,1)Al,p +(1+δp,2)Al,p−2 +Al,p+2

)
−

(l +2)
(2l +5)(2l +3)

(
(2+δp,1)Al+2,p +(1+δp,2)Al+2,p−2 +Al+2,p+2

))]
(S15)

−nωAl,p =
l(l +1)

2τB

[
−Bl,p +

β0

2

(
1

2l−1
(
Bl−1,p−1 +Bl−1,p+1

)
−

1
2l +3

(
Bl+1,p−1 +Bl+1,p+1

))
+

γ0

4

(
(l−1)

(2l−3)(2l−1)
(
(2−δp,1)Bl−2,p +Bl−2,p−2 +Bl−2,p+2

)
+

1
(2l +3)(2l−1)

(
(2−δp,1)Bl,p +Bl,p−2 +Bl,p+2

)
−

(l +2)
(2l +5)(2l +3)

(
(2−δp,1)Bl+2,p +Bl+2,p−2 +Bl+2,p+2

))]
(S16)

In the above equations δ j,k denotes the Kronecker delta function where δ j,k = 1 if j = k and δ j,k = 0 otherwise. The
equations contain only either even or odd values of l + p. Thus, the even and odd sets of variables are decoupled.
Further, because the only inhomogeneous term, A0,0, is even only the even values of l + p are non-zero. To calculate the
second moment we need to express x2 in terms of Legendre polynomials as

x2 =
2
3

P2(x)+
1
3

P0(x). (S17)
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Then, the second moment is

e2
z =

∫ 1

−1
x2 f (x, t)dx =

∫ 1

−1

(
2
3

P2(x)+
1
3

P0(x)
)

f (x, t)dx (S18)

=
∞

∑
p=0

4
15

(
A2,p cos pωt +B2,n sin pωt

)
+

2
3

(
A0,p cos pωt +B0,p sin pωt

)
(S19)

=
4

15

∞

∑
p=0

(
A2,p cos pωt +B2,p sin pωt

)
+

1
3

(S20)

Writing in complex notation, the p’th harmonics become

ez,p =
2
3
(
A1,p + iB1,p

)
(S21)

e2
z ,p =

4
15
(
A2,p + iB2,p

)
for p > 0 (S22)

e2
z ,0 =

1
3
+

4
15

A2,0 (S23)

and the Fourier transform becomes

ez(pω) =

(
π

2

)1/2
ez,p (S24)

e2
z (pω) =

(
π

2

)1/2
e2

z ,p for p > 0 (S25)

e2
z (0) = (2π)1/2e2

z ,0 (S26)

S2.1 Frequency domain representation of signals

The magnetic susceptibility and optomagnetic signals can be expressed in the frequency domain. First, the Fourier
transforms of M(t) and V (t) for H(t) = H0 cosωt are found:

M(ω ′)

n
= χV H0

[
K̃
2

(
2
π

)1/2(
e2

z (ω
′+ω)+ e2

z (ω
′−ω)

)
+

δ (ω ′+ω)+δ (ω ′−ω)

1+χN⊥

]

+m
(

2
π

)1/2
ez(ω

′) (S27)

V (ω ′)

Vref
=
√

2πδ (ω ′)

(
1+

1
3

nz∆σ

)
−nz∆σ

(
2
π

)1/2
e2

z (ω
′) (S28)

Then, the first harmonic of the magnetic signal, M1, and the second harmonic of the optomagnetic signal, V2 are
found and expressed in terms of the p’th harmonics of ez and e2

z as

M1

n
= χVcH0

[
K̃
2
(
e2

z ,2 +2e2
z ,0
)
+

1
1+χN⊥

]
+mez,1 (S29)

χ1 = 3χ0

[
1
β0

ez,1 +
α

2
(
e2

z ,2 +2e2
z ,0
)]

+
nχVc

1+χN⊥
(S30)

V2

Vref
=−nz∆σe2

z ,2 (S31)

with χ0 = nµ0m2/(3kBT ).
Note, that in our previous work (and also in this work), experimental results are reported for a sine reference applied

magnetic field rather than the cosine reference field used in the derivation of the Fokker-Planck equation. The second
harmonic signal for a cosine reference, Ṽ2 = Ṽ ′2− iṼ ′′2 , is related to the second harmonic signal obtained for a sine reference,
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V2 ≡V ′2 + iV ′′2 , as Ṽ ′2 =−V ′′2 and Ṽ ′′2 =−V ′2.6

S3 Fit of low-β0 spectra
The low-β0 (β0 = 10−3) optomagnetic and magnetic spectra calculated using Fokker-Planck simulations with no induced
magnetic moment are shown in Fig. S3a-d. The Fokker-Planck simulation results were compared to the low-field approxi-
mations given by the Debye model, χ1 = (1+ i f/ fB)−1, for the magnetic AC susceptibility and by iχ2

1 for the optomagnetic
signal.

Fig. S3 (a)-(d) Fokker-Planck simulation results obtained for (blue dots) with β0 = 0.001 and γ0 = 0 and analytical low-field model (red
line) fits. Panels (a) and (b) show V ′2 and V ′′2 normalised by the low-frequency amplitude. Panels (c) and (d) show χ ′1 and χ ′′1 normalised
by the low-frequency amplitude, χ ′1(0). Panels (e)-(h) show the residuals from the fits in panels (a)-(d).

The Debye model provides a precise description of the low-field magnetic susceptibility signal; the residuals (Fig. S3g-
h) are very small and are further decreased when reducing β0. To fit the optomagnetic signal, however, the analytical
model had to be modified. By shifting the Brownian relaxation frequency, a reasonable fit was obtained to

V2 = i
( 1

1+ i f
1.21 fB

)2
. (S32)

The residuals (Fig. S3e-f), show a systematic deviation, which is not further reduced when reducing β0. This indicates
that the low-field model (iχ2

1 ) does not provide an accurate description of the low-field OM signal. It is noted, however,
that the deviation from the correct line shape is less than about 1% of the low-frequency signal level.

S4 New ACS approximation
Fig. S4 and Fig. S5 compares the analytical approximations developed by Yoshida and Enpuku and in this work to results
from Fokker-Planck simulations.

Fig. S4 Comparison between analytical model by Yoshida and Enpuku 7 (lines) and Fokker-Planck calculations with α = 0 (points) for
β0 = 0.99,2.7,7.2,19,52,102,300 (blue to red).
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Fig. S5 Comparison between improved analytical approximation of the ACS signal, Eqs. (46)-(53) (lines) and Fokker-Planck calcula-
tions with α = 0 (points) for β0 = 0.99,2.7,7.2,19,52,102,300 (blue to red).

S5 Analytical OM approximation

The magnetic field- and frequency-dependent optomagnetic signal for zero induced magnetic moment (χ = 0) can to a
good approximation be described by

V ′2
V ′′2 (0)

=
2a k

(
f

fB1

)b

((
f

fB1

)c
+1
)2a (S33)

V ′′2
V ′′2 (0)

=

(
1− f 2

f0
2

)
((

f
fB2

)h
+1
)2d

(
f

fB3
+1
)g


(

f
f0
+1
)2

(
f

fB4
+1
)2


j

(S34)

where V ′′2 (0) is the equilibrium response calculated by Fock et al.6 or alternatively given by

V ′′2 (0) =
β0

2

45
(

0.1051β0
1.8036−0.0156β0 +0.007298β0

2.7939 +1.0
)0.99666 (S35)
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with the parameters

f0 = 1.22475 fB
(

1+0.0511β
1.8347
0 −0.0015β

1.835
0

)0.375
(S36)

fB1 = 1.207 fB
(

1+0.0001064β0
4 +3.010−7

β0
5 +0.068β0

2.5
)0.3015

(S37)

fB2 = 1.2254 fB
(

1+0.054883β0
2.2419

)0.38032
(S38)

fB3 = fB

269.205
β0

0.95686 −1.5

230
β0

0.9257 −1
(S39)

fB4 = fB
0.0529478β0

1.817 +0.020928

0.014925β0
1.817 +1

(S40)

k =
(

1+0.217β0
2.468

)0.1505
(S41)

a =
(

1+0.0000079β0
3.06
)0.1827

(S42)

b =
2.1031510−8 β0

5 +0.0586879β0
2.335 +1.0015

0.04054β0
2.4305 +1

(S43)

c =
2
(

0.2211β0
2 +1

)0.9632

0.00029β0
3 +0.227β0

1.8233 +1
(S44)

d = 0.0013 exp

(
− (ln(β0)−14.771)2

8.33992

) (
5000e−0.127β0 +1

)
+1 (S45)

g =
0.6688β0

0.5577

0.0041β0
1.46 +1

(S46)

h =
2
(

0.044β0
2.217 +1

)0.29885

0.05955β0
0.95936 +1

(S47)

j =
0.0141β0

2.586 +0.00001658β0
5.3936

3.6810−8 β0
6.4614 +1

(S48)

Fig. S6 compares the analytical approximation to Fokker-Planck simulations.

Fig. S6 Comparison between analytical approximation of the OM signal, Eqs. (S31)-(S45) (lines) and Fokker-Planck calculations with
α = 0 (points) for β0 = 0.99,2.7,7.2,19,52,102 (blue to red).
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S6 Fitting optomagnetic data in the limiting cases
The size and magnetic moment can be obtianed in the limiting cases of field and frequencies for optomagnetic measure-
ments as described in Fock et al.6

S6.1 Low-field behaviour vs. frequency
The size can determined from measurements of the low-field optomagnetic signal vs. frequency.

Fig. S7 Low-field (peak amplitude 0.35 mT) OM measurements of (a) V ′2/Vref and (b) V ′′2 /Vref vs. frequency for the NP1 (red) and NP2
(blue) samples (points). The error bars were calculated as the standard variation of the mean from five repeated measurements. The
solid lines are fits to the low-field model assuming lognormal size distributions. (c) The size distributions obtained for the two particle
systems.

Fig. S8 Low-field (peak amplitude 0.35 mT) ACS measurements of (a) χ ′1 and (b) χ ′′1 vs. frequency for the NP1 (red) and NP2
(blue) samples (points). The solid lines are fits to the low-field Debye model assuming lognormal distributions of Brownian relaxation
frequencies (hydrodynamic sizes). The error bars were adjusted to give the fit a reduced chi square value of 1. (c) The size distributions
obtained for the two particle systems.

S6.2 Low-frequency vs. field behaviour
The magnetic moment can be determined from measurements of the low-frequency vs. field optomagnetic signal.

1–16 | 9



Supplementary information

Fig. S9 Point are imaginary part of the low-frequency (equilibrium) optomagnetic measurements of NP1 (red) and NP2 (blue) samples.
The lines are fits of the equilibrium model to the the second harmonic data (solid line and filled points). The plots were normalised by
the signal strength Vrefnz∆σ .

S7 Fitting to bivariate distribution
For a spectra measured at temperature T and with magnetic field strength H0, the two-dimensional distribution in fB and
m, p( fB,m)dτB dm, was first converted to a distribution in fB and β0 = µ0H0m/(kBT ) as

pH0( fB,β0)d fB dβ0. (S49)

Then, a one-dimensional discrete distribution was constructed,

p∗H0
({ fB,β0}) = p( fB,m)∆ fB∆β0, (S50)

describing the number fraction of particles with relaxation time between fB and fB +∆τB and with β0 values between β0

and β0 +∆β0.
111 spectra for β0-values chosen at equidistant logarithmic steps between 10−3 and 100 were calculated by solving

the Fokker-Planck equation (Section 2.3) for 79 f/ fB values chosen at equidistant logarithmic steps between 3 ·10−3 and
104.

Using linear interpolation, the spectral values were calculated at the N measurement frequencies for each of the 111
spectra with different β0 values and with fB ranging from 1 Hz to 105 Hz in 75 equidistant logarithmic steps. A total of
8325 spectra were obtained with the set of parameters { fB,β0}. The ACS spectra were arranged in a matrix, SACS and
the OM spectra were arranged in a matrix, SOM, both with the size N×8325. The ACS and OM spectra measured at H0

were then given by

χ1(H0) = n
kBT

µ0H2
0

SACS ·p∗H0
+χ∞ (S51)

Ṽ2(H0)

Vref
=−nz

∆̃σ

m̃nσ/nm

(
kBT
µ0H0

)nσ/nm

SOM ·p∗H0
(S52)

where the matrix SACS consisted of the spectra calculated using β0ez,1, whereas SOM consisted of the spectra calculated

using (β0)
nσ/nm e2

z ,2.
Increasing the spacing between magnetic moments and Brownian relaxation frequencies in SACS and SOM did not

change the result.

S8 Fits of data for the NP2 sample
The data for the NP2 sample was fitted using a bimodal bivariate distribution. In Fig. S10 the OM and ACS data were
fitted, whereas in Fig. S11 only the ACS data was fitted.
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0.2 0.4 0.6 0.8

µ fB σ fB µm σm ρ
nσ

nm

nz∆̃σ

m̃nσ/nm
n χ∞ n fB Dh Dh

[kHz] [aJ/T] [105] [1017m−3] [nm] [nm]

NP2 2.82(8) 1.60(1) 4.00(8) 0.550(8) -1.00(1) 0.66(3) -155. 1.82 0.039 -0.344(4) 56(1) 64(2)
- 1.336(1) 0.375(1) 4.02(6) 0.360(5) -0.87(1) 6.1(1) -0.00619 1.29 - -0.95(2) 71.58(4) 72.14(4)

Fig. S10 Fit to NP2 ACS and OM data using a bimodal bivariate lognormal distribution. Panels (a) and (b) show the real and imaginary
parts of the ACS data (points). Panels (c) and (d) show the real and imaginary parts of the OM data (points). The solid lines are the fit
obtained from simultaneous analysis of all data to a bivariate distribution of Brownian relaxation frequencies and magnetic moments.
The colours from blue to red correspond to increasing magnetic field amplitudes as given in the Methods section. Panel (e) shows the
resulting bivariate distribution function. The distribution is normalised by its maximum value and the contour lines are at 0.01, 0.1, 0.3,
0.5, 0.7 and 0.9. The table shows the number-weighted fitting parameters.
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nz∆̃σ

m̃nσ/nm
n χ∞ n fB Dh Dh

[kHz] [aJ/T] [105] [1017m−3] [nm] [nm]

NP2 6.1(6) 1.88(3) 3.0(2) 0.70(2) -1.000(1) 2 -6.03 2.13 0.032 -0.371(8) 43(5) 53(5)
- 1.14(3) 0.44(3) 5.0(1) 0.18(3) -1.000(7) 2 -22.6 1.23 - -0.41(5) 75(2) 76(2)

Fig. S11 Fit to NP2 ACS data (only) using a bimodal bivariate lognormal distribution. Panels (a) and (c) show the real and imaginary
parts of the ACS data (points). Panels (b) and (d) show the real and imaginary parts of the OM data (points). The solid lines are the fit
obtained from simultaneous analysis of only the ACS data to a bivariate distribution of Brownian relaxation frequencies and magnetic
moments. The colours from blue to red correspond to increasing field amplitudes as given in the Methods section. Panel (e) shows the
resulting bivariate distribution function. The distribution is normalised by its maximum value and the contour lines are at 0.01, 0.1, 0.3,
0.5, 0.7 and 0.9. The table shows the number-weighted fitting parameters.
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S9 Particle size distributions obtained by TEM

Fig. S12 Histogram of (a) particle size (b) core size and (c) number of cores per particle for the NP1 sample obtained from TEM
images. The line in (a) is the number-weighted distribution obtained from the combined OM and ACS fit.

Fig. S13 Histogram of (a) particle size (b) core size and (c) number of cores per particle for the NP2 sample obtained from TEM
images. The line in (a) is the number-weighted distribution obtained by fitting the ACS data (see Fig. S11).

S10 Matlab implementation of functions
S10.1 Fokker-Planck function

The section gives the implementation of the Fokker-Planck function in Matlab.

function [F] = FokkerPlanck( beta,gamma,f,L,N )
%% [F] = FokkerPlanck( beta,gamma,f,L,N )
%
% Please cite:
% Jeppe Fock, Christoph Balceris, Rocio Costo, Lunjie Zeng, Frank Ludwig, and Mikkel Fougt Hansen
% Nanoscale 2017
% "Field-dependent dynamic responses from dilute magnetic nanoparticle dispersions".
%
% == input ==
% beta: \mu_0 H m/(k_{\rm B} T)
% gamma:
% f: array of the reduced frequency - f/f_{\rm B}=\omega\tau_{\rm B} %
% L: truncation of L
% N: truncation of N
%
% == return ==
% F(i).A(l,n)=A_{l-1,n-1}
% F(i).B(l,n)=B_{l-1,n-1}
% F(i).cos= \cos \theta
% F(i).cos_square= \cos^2 \theta
% F(i).f=f
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% F(i).resnorm: norm of residuals in the LSQR algorithm

xtmp=[];%initialize the vector for solutions
L2=[];
U2=[];
resnorm_lim=1e-13; %desired accuracy of the LSQR algorithm

for i=1:length(beta)
F(i).f=f(i);
F(i).beta=beta(i);
F(i).gamma=gamma(i);

% Write the systems of linear equations:
[MM,fitI]=FokkerPlanckMatrix(beta(i),gamma(i),f(i),L,N );
Y=-MM(2:end,1)*0.5; % MM is a matrix containing the linear equations
MM=MM(2:end,2:end);

if isempty(xtmp) % if first run, initailize starting point to default (all zeros.)
xtmp=sparse(size(MM,2),1); %

end

% Solve the equation using the LSQR algoritme. Set maximum iteration
% use the last results as starting point for LSQR
[xtmp,flag,resnorm,iter,resvec]=lsqr(MM,Y,resnorm_lim,1000000,[],[],xtmp);

x=sparse(L*N*2,1);
x(fitI)=[0.5;xtmp];

% Formating returns:
Aret=@(l,n) x((l*N+n)*2+1);
Bret=@(l,n) x((l*N+n)*2+2);

F(i).cos=2/3*(Aret(1,1:N-1)+Bret(1,1:N-1)*1i);
F(i).cos_square=[4/15*(Aret(2,1:N-1)+1i*Bret(2,1:N-1)); 4/15*Aret(2,0)+1/3];
F(i).resnorm=resnorm;
F(i).flag=flag;

end
end

function [ M, fitI] = FokkerPlanckMatrix( beta,gamma,f,L,N )
%[ M, fitI] = FokkerPlanckMatrix3( beta,gamma,f,L,N )
%
% make matrix of linear equations.

kroneckerDelta =@(x) x==0;
% make a diagonal matrix with the row/column "(l*N+n)*2" corresponding to A_{l,n}
% and "(l*N+n)*2" corresponding to B_{l,n}:

% A_{l,n}=X((l*N+n)*2+2*N+3)
% B_{l,n}=X((l*N+n)*2+1+2*N+3)
X = diag(sparse(ones(1,2*L*N)));
X=[sparse(2*L*N,2*N+2) X];

%set the element zero if it is defined zero. The element will later be
%removed from the equations.
%even and odd
X(:,(0*N+(1:N-1))*2+2*N+3)=0;%A(0,n)=0 ,for n>=1
X(:,(0*N+(0:N-1))*2+1+2*N+3)=0;%B(0,n)=0,for n>=0
X(:,((0:L-1)*N+0)*2+1+2*N+3)=0;%B(l,0)=0

% calculate only even numbers
index=bsxfun(@plus,(0:2:L-1)*N,(1:2:N-1)’);%B(l,n)=0 for l even n odd

X(:,index(:)*2+1+2*N+3)=0; %B(l,n)=0 for l even n odd
X(:,index(:)*2+2*N+3)=0; %A(l,n)=0 for l even n odd

index=bsxfun(@plus,(1:2:L-1)*N,(0:2:N-1)’);%for l odd n even
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X(:,index(:)*2+1+2*N+3)=0; %B(l,n)=0 for l odd n even
X(:,index(:)*2+2*N+3)=0; %A(l,n)=0 for l odd n even

function x=fA(l,n) % function to convert from matrix A_{l,n} to the vector X
x=X(:,(l*N+n)*2+2*N+3);

end
function x=fB(l,n) % function to convert from matrix B_{l,n} to the vector X

x=X(:,(l*N+n)*2+1+2*N+3);
end

xtmp=[];%initialize the vector for solutions
M=sparse(2*L*N,(L-2)*((N-2)+1));
M(:,1)=fA(0,0); %A_{0,0}=1 , the only non-homogeneous equation
% Write the systems of linear equations:

for l=1:L-3
n=(2-mod(l,2)):2:N-3;

M(:,((l*N+n)*2+1))=-fA(l,n)+...
beta/2*(1/(2*l-1)*(bsxfun(@times,(1+kroneckerDelta(1-n)),fA(l-1,n-1))+fA(l-1,n+1))-...
1/(2*l+3)*(bsxfun(@times,(1+kroneckerDelta(1-n)),fA(l+1,n-1))+fA(l+1,n+1)))+...
gamma/4*(...
(l-1)/((2*l-3)*(2*l-1))*(bsxfun(@times,(2+kroneckerDelta(1-n)),fA(l-2,n))+ ...

bsxfun(@times,(1+kroneckerDelta(2-n)),fA(l-2,n-2))+fA(l-2,n+2))+...
1/((2*l+3)*(2*l-1))*(bsxfun(@times,(2+kroneckerDelta(1-n)),fA(l,n))+ ...

bsxfun(@times,(1+kroneckerDelta(2-n)),fA(l,n-2))+fA(l,n+2))-...
(l+2)/((2*l+5)*(2*l+3))*(bsxfun(@times,(2+kroneckerDelta(1-n)),fA(l+2,n))+ ...

bsxfun(@times,(1+kroneckerDelta(2-n)),fA(l+2,n-2))+fA(l+2,n+2)))-...
bsxfun(@times,n*2*f/(l*(l+1)),fB(l,n));
M(:,((l*N+n)*2+2))=-fB(l,n)+...
beta/2*(1/(2*l-1)*(fB(l-1,n-1)+fB(l-1,n+1))-...
1/(2*l+3)*(fB(l+1,n-1)+fB(l+1,n+1)))+...
gamma/4*(...
(l-1)/((2*l-3)*(2*l-1))*(bsxfun(@times,(2-kroneckerDelta(1-n)),fB(l-2,n))+fB(l-2,n-2)+fB(l-2,n+2))+...
1/((2*l+3)*(2*l-1))*(bsxfun(@times,(2-kroneckerDelta(1-n)),fB(l,n))+fB(l,n-2)+fB(l,n+2))-...
(l+2)/((2*l+5)*(2*l+3))*(bsxfun(@times,(2-kroneckerDelta(1-n)),fB(l+2,n))+fB(l+2,n-2)+fB(l+2,n+2)))+...
bsxfun(@times,n*2*f/(l*(l+1)),fA(l,n));

if mod(l,2) % Skip odd values
continue

end
n=0;
M(:,((l*N+n)*2))= -fA(l,0)+...

beta/2*(1/(2*l-1)*(fA(l-1,1))-...
1/(2*l+3)*(fA(l+1,1)))+...
gamma/4*(...
(l-1)/((2*l-3)*(2*l-1))*(2*fA(l-2,0)+fA(l-2,2))+...
1/((2*l+3)*(2*l-1))*(2*fA(l,0)+fA(l,2))-...
(l+2)/((2*l+5)*(2*l+3))*(2*fA(l+2,0)+fA(l+2,2)));

end
KeepLines=find(sum(abs(M),1)~=0);% Find non-empty equations
M=M(:,KeepLines);%reduce matrix
fitI=find(sum(abs(M),2)~=0); %only fit varibles which are not defined nonzero.
M=M(fitI,:)’;

end

S10.2 Analytical OM function

The section gives the implementation of the analytical OM function in Matlab.

function V2 = NanalyticV2(f,beta)
%% V2 = NanalyticV2(f,beta)
%
% calculate the analytical OM response valid for beta values <300
%
% f is the frequency normalized with f_B
% beta = m B_0/(k_B T)
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% V2=V2’+1i V2’’: The complex optomagnetic second harmonic response.
%
% Please cite:
% Jeppe Fock, Christoph Balceris, Rocio Costo, Lunjie Zeng, Frank Ludwig, and Mikkel Fougt Hansen
% Nanoscale 2017
% "Field-dependent dynamic responses from dilute magnetic nanoparticle dispersions".
%

f0 = (beta.^( 1.8350).*(-0.0016)+beta.^1.8347.*(0.0512)+1).^(0.375).*1.22475;
V20 = beta.^2./(beta.*(-1.56e-2)+beta.^1.8036.*0.1051+beta.^2.7939.*7.298e-3+1).^0.99666./45);
fB1 = (beta.^4.*1.064e-4+beta.^5.*3.0e-7+beta.^(5/2).*(1.7e1./2.5e2)+1).^3.015e-1.*1.207;
fB2 = (beta.^2.2419.*5.4883e-2+1).^0.38032.*1.2254;
fB3 = (1./beta.^9.5686e-1.*2.69205e2-3./2)./(1./beta.^0.9257.*2.3e2-1);
fB4 = (beta.^1.817.*5.294784e-2+2.0928e-2)./(beta.^1.817.*1.4925e-2+1);
k = (beta.^(2.468).*(2.17e2./1e3)+1).^1.505e-1;
a = (beta.^(3.06).*7.9e-6+1).^0.1827;
b = (beta.^5.*2.10315e-8+beta.^( 2.335).*5.86879e-2+1.0015)./(beta.^2.4305.*4.054e-2+1);
c = ((beta.^2.*0.2211+1).^(0.9632).*2)./(beta.^3.*2.9e-4+beta.^1.8233.*(0.227)+1);
d = exp((log(beta/2.6e+06)).^2.*(-0.1199^2)).*(exp(beta.*( -0.1270)).*5e3+1).*1.3e-3+1;
g = (beta.^5.577e-1.*(0.6688))./(beta.^(7.3e1./5.0e1).*4.1e-3+1);
h = ((beta.^2.217.*(1.1e1./2.5e2)+1.0).^0.29885.*2)./(beta.^9.5936e-1.*5.955e-2+1);
j = (beta.^2.586.*1.41e-2+beta.^5.3936.*1.658e-5)./(beta.^6.4614.*3.68e-8+1);

imagV2
=-((f./f0).^2-1).*((f./fB2).^h+1).^(d.*-2).*(f./fB3+1).^g.*((f./f0+1).^2./(f./fB4+1).^2).^j;

realV2 =2.^a.*k.*(f./fB1).^b.*((f./fB1).^c+1).^(a.*-2);
V2=(realV2+1i*imagV2).*V20;

end

S10.3 Analytical ACS function

The section gives the implementation of the analytical ACS function in Matlab.

function Chi = NanalyticACS(f,beta)
%% Chi = NanalyticACS(f,beta)
%
% f is the frequency normalized with f_B
% beta = m B_0/(k_B T)
% Chi=Chi’-1i Chi’’: The complex susceptibility.
%
% Please cite:
% Jeppe Fock, Christoph Balceris, Rocio Costo, Lunjie Zeng, Frank Ludwig, and Mikkel Fougt Hansen
% Nanoscale 2017
% "Field-dependent dynamic responses from dilute magnetic nanoparticle dispersions".
%

chi10 = (1./(1-beta.^1.*2.47e-2+beta.^(1.7).*(0.135)+ beta.^(2.7).*2.71e-2)).^(0.37);
fB1 = (beta.^2.*(0.144)+1).^(0.3950);
fB2 = (beta.^2.*9.08e-2+1.0).^(0.48);
a = (beta.^(2.2).*2.52e-2)./(beta.^(1.4).*(0.2390)+beta.^(2.3).*( 0.0144)+1)+1;
b = (beta.^(2.5).*(-2.14e-3))./(beta.^( 1.45).*7.37e-2+beta.^(2.45).*6.79e-3+1)+1;
c = (beta.^(2.2).*2.01e-2)./(beta.^(1.4).*(0.16)+beta.^(2.1).*2.29e-2+1)+1;

realChi = chi10.*(f.^2.*1./fB1.^2+1).^(-a);
imagChi = (chi10.*((f.*c)./fB2).^b)./(f.^2./fB2.^2+1);
Chi = realChi + 1i*imagChi;

end

S11 Higher harmonics
The higher harmonics are also obtained from the Fokker-Planck calculations and can be used to characterise magnetic
nanoparticles. Martens et al.8 used the ratio between higher harmonics to characterise magnetic nanoparticles and found
that they needed to use a distribution of particle sizes to describe AC susceptibility data properly. They solved the Fokker-
Planck equation using the ode15s routine in MATLAB R©. Figure S14 shows that it is possible to reproduce their curves
using the solution to the Fokker-Planck equation presented in this paper.
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The p’th harmonic is calculated using only a single moment and consequently a constant β0 as

χp( f ) =
3χ0

β0

∫
ez,p( f/ fB,β0)p( fB)d fB (S53)

where the distribution is either monodisperse (p( fB) = δ ( fB− fB0), where δ is the delta function) or given as a Gamma
distribution of the hydrodynamic radius, R as

p( fB)d fB =
1

R0Γ(β +1)

(R( fB)
R0

)β

exp(−R( fB)/R0)d fB (S54)

R( fB) =
( kBT

π2η fB

)1/3
(S55)

with the parameters R0 and β defined in Martens et al.8

Fig. S14 Reproduced figure 2 and 3 from Martens et al. 8. Ratio of the fifth and third harmonic of the AC susceptibility for 100 nm
particles (left) and 40 nm particles (right). Black curves are calculated using monodisperse distributions and red using the distributions
defined in Martens et al. 8
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