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1. Two-step growth method

Figure S1. Using a 2-step growth method, flat, textured, stoichiometric films can be grown.1 First a thin 
(3nm) ‘seed’ layer of the desired film material (Bi2Te3 or Sb2Te3) was grown at room temperature (1), 
and heated with 5 K/min to 210 °C, which induces self-organized growth with c-axis out of plane even 
on an amorphous SiOx substrate (2). Growth is immediately continued at 210 °C to prevent excessive 
evaporation. Due to vdWaals epitaxy, subsequent layers adopt the texture of the seed layer (3). 
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2. Observed Reflections in RHEED and TEM Diffraction

The RHEED images were analyzed by obtaining an intensity line profile across the RHEED streaks. The 
intensity peak locations were determined by fitting a Gaussian function, and the peak separation of all 
detected peaks was fitted to a linear profile using a least squares fit. From this fit the streak spacing (in 
pixels) was extracted. The camera pixel spacing was calibrated using the literature bulk value of the 
relevant material and under the assumption that only the planes shown in figure S2 were in a reflection 
condition. The spacing of the first material layer, just before switching to a different material was taken 
for calibration, since this is the layer which is closest to bulk equilibrium.

Figure S2. a.) The red atoms indicate the positions of the atoms in the outermost surface layer in Bi2Te3 
and Sb2Te3 when grown with c-axis-up texture, the blue atoms the subsurface layer positions. Since 
the RHEED beam penetrates ~1nm, the shorter-scale symmetry is not probed, and the red {01-10} and 
purple {11-20} plane spacings are observed as streaks on the phosphor screen. The peaks are also 
marked accordingly in figure 1 of the main paper. In TEM diffraction, the beam penetrates through the 
whole sample, and the smaller scale symmetry is probed. The {01-10} reflection then becomes 
forbidden due to the intermediate planes at 1/3 spacing (blue) and the prevailing reflection becomes 
{03-30}. The {11-20} spacing is unaffected. Due to the trigonal symmetry of the structure, this means 
the ratio between both allowed reflections stays √3. b.) The R-3m symmetry structure of Bi2Te3 and 
Sb2Te3. Purple indicates the tellurium (Te) atoms, orange the antimony (Sb) or bismuth (Bi) atoms. 
Van-der-Waals-gaps occur every 5 atomic layers (one quintuple) and are bounded by a Te layer on 
both sides.



3. Cross-section TEM versus Plan-View EDS. 

By measuring individual layer thicknesses from cross-section TEM images, one can calculate the overall 
elemental composition of the film when assuming stoichiometric Bi2Te3, GeTe and Sb2Te3 films. These 
values are compared to those obtained using Electron Dispersive Spectroscopy EDS scans of large (few 
micron) sized areas. The results are shown in table S1. The two types of measurements are considered 
to be in good agreement, which means no significant intermixing has occurred during growth. This is in 
agreement with the reports by Lanius et al. 2

Bi2Te3/GeTe Cross (at.%) EDS (at.%) Sb2Te3/Bi2Te3 Cross (at.%) EDS (at.%)
Bi 23.5 26.1 Bi 19.8 18.7
Ge 20.6 18.7 Sb 20.2 18.8
Te 55.9 55.3 Te 60.0 62.5

Table S1.  Elemental composition from cross-section thickness measurement is indicated by “Cross.” 
Composition from EDS scans is denoted by “EDS”. The composition is shown per constituent element. 
The independent measurements agree within a reasonable error of 2 at.%.

4. Dislocation Movement 

As discussed in the main text, a likely mechanism for strain relaxation is dislocation movement. In 
(isotropic) 3D Materials, it is energetically favourable for dislocations to glide to the interface, where 
strain is highest. The amount of broken bonds at the dislocation core remains the same. For 2D materials 
however, a dislocation core will generally be situated at the vdWaals gap. Glide to the strained interface 
involves severing covalent bonds within the quintuple layer. This is energetically unfavourable, so the 
dislocation is blocked and can only slide parallel to the strained interface. This mechanism could (partly) 
explain the persistence of a strain gradient in 2D materials.

Strained interface Strained interface

Figure S3.  Comparison of Dislocation mobility in 3D materials (left) and 2D materials (Right). In 3D 
materials, dislocations are expected to glide to the interface and form a regularly spaced array, 
relieving strain in the film. In 2D materials, dislocations are expected to be confined to the height 
where they originally were introduced: only the layers are relaxed.



5. Model for Strain Relaxation 
We propose a model for predictive control of the strain state of a quasi-2D bonded vdWaals multilayer, 
where we describe a strain ε in a growing (quintuple) layer as an overdamped harmonic oscillator. 
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The rate of change of strain (LHS of eq. 1) is obtained by adding all forces/stresses acting on the growing 
layer, which are described on the RHS. The driving force for strain relaxation  is given using  Hooke’s law 

, which describes stress as linearly related to the strain through the general stiffness tensor ij ijkl klC 

Cijkl.3,4 This stress is the restoring force (first RHS term) of the oscillator. A damping term is added to eq.1 
to account for the relaxation retardation force due to inter-layer vdWaals bonding and formation energy 
of dislocations. These effects are dependent on the lattice mismatch between consecutive (quintuple) 
layers, which is equivalent to the change in strain over height h: . Since lattice mismatch /d dh
increases the length of the Te-Te vdWaals bonds beyond equilibrium, this increases the energy of the 
system. Furthermore, the number of dislocations necessary to accommodate this mismatch is also 
linearly dependent on the lattice mismatch. Both damping terms are therefore combined in the second 
RHS term with an unknown prefactor .   Eq.1 can be solved for strain as a function of thickness: 
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Where A is just a normalization constant, and b gives the rate of strain relaxation. The solutions of the 
harmonic oscillator contain a solution for an overdamped system, where the system returns with 
exponential decay to the equilibrium position:
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Equation 2 can be fitted to the experimentally obtained lattice parameters, which will yield a value for b. 
The observed lattice parameters α at layer thickness h were fitted to an equation of the form: 
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Since the prefactor is purely a scaling parameter which determines the strain at h = 0, it can /i fA  

be arbitrarily set to the desired strain value. The strain curves can be described from any hypothetical 
strained starting point. The defining parameter is the strain relaxation rate b. 

The thickness for half strain hf can be obtained:



, with hi = 0, yields (6)
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Formula 3 can be rewritten to obtain  Plugging in C = 50 GPa 5 (in-plane Youngs modulus) 
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yields β = 500 GPa (b=0.1). This should be interpreted as the combination of pressures preventing 
relaxation, e.g. the interlayer vdWaals force and the dislocation formation potential.

6. Dislocation Density Calculation

Using the strain relaxation described by equation 2 of the main text, we can readily derive the dislocation 
density as a function of layer thickness. We note that this explicit model and formula is not strictly 
needed, and a numerical result can be obtained directly from the data. Since for 2D materials 
dislocations are not concentrated at the (strained) interface, two steps are added to calculate the 
dislocation density at arbitrary film height – which is then irrespective of actual film thickness. The 
dislocations considered here are always of edge-type with Burgers vector and line direction oriented in a 
plane parallel to the interface. Such edge dislocations are the most efficient in relaxing strain. A single 
array of dislocations can only relax the strain in one dimension however. Since the strain is bidirectional 
(in a plane parallel to the interface) a network of dislocations is required. Due to hexagonal symmetry of 
the individual telluride planes (parallel to interface) which are stacked in a-b-c fashion (perpendicular to 
the interface), it is expected that a triangular network of dislocation lines is present in planes parallel to 
the interface. The Burgers vectors have a size equal to the a lattice parameter (and are of 1/3<11-20> 
type).6 For the present analysis it is sufficient to only consider a single plane spanned by the a-lattice 
vector parallel to the interface and the c-vector perpendicular to the interface, where the strain is 
relaxed in one dimension. 

A step by step derivation is given below.

1. Strain is approximated using a decaying exponential:

𝜀(ℎ) =  𝐴ⅇ ‒ 𝑏ℎ

2. The number fraction of dislocations N in an area defined by the unit cell width a (parallel to 
interface) and between height zero and final height h (perpendicular to interface), is directly 
proportional to the strain, with ϵ0 the strain at height zero (ϵ(0)):

𝑁 = 𝜖0 ‒ 𝜖 =  𝜖0 ‒ 𝐴ⅇ ‒ 𝑏ℎ

3. The total dislocation density δT (number of dislocations per unit of area A) is then given by:
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𝑁
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For 2D materials dislocations will not move to the interface, and an additional step is required to 
calculate the dislocation density at arbitrary distance from the interface, for a given layer thickness.

4. To calculate the number of dislocations at arbitrary distance from the interface, for a given strain 
profile, we take the derivative of N, which gives the dislocation number at a given thickness.

𝑛(ℎ) =  
𝑑𝑁
𝑑ℎ

= 𝐴𝑏ⅇ ‒ 𝑏ℎ 

5. The dislocation number can again be normalized to a density:

𝛿2𝐷 =
𝐴𝑏ⅇ ‒ 𝑏ℎ

𝑎
 

6. The relevant spacings between equidistantly spaced dislocations can trivially be obtained by 

 𝑑 = 1/𝛿



Figure S4. Dislocation densities per unit area in a cross section are plotted, assuming Sb2Te3 growth on 
Bi2Te3. A=0.127, b=0.0929, a = 4.26 nm. Top Left: Total dislocation density in the film (#/nm2) versus 
film thickness (nm). Top Right: Distance (nm) in between equidistantly spaced dislocations versus film 
thickness when it is assumed that that the total dislocation density in the top left image translates to a 
single array of misfit dislocations at the interface, resembling the case of 3D materials where misfit is 
relaxed at the interface. Such a single array is rather hypothetical because it is inconsistent with the 
assumed exponentially decaying strain profile. Bottom Left: Dislocation density (#/nm2) versus 
distance from the interface (nm) for 2D materials where dislocations are not localized at the interface. 
Bottom Right: Distance (nm) in between equidistantly spaced dislocations versus distance from the 
interface (nm). The dislocation concentration is still highest at the interface, but decaying for 
increasing height within the film. In contrast to the hypothetical top right image, this bottom right 
image displays an actual physical picture consistent with the exponential strain relaxation observed, 
which could be verified in for instance cross-sectional TEM images.

7. Plan-view TEM Imaging
TEM analysis of plan-view samples has been performed on bilayers of Sb2Te3 on Bi2Te3 (Figure S6ab) 
and GeTe on Bi2Te3 (Figure S6cd). The real-space images show that no regular moiré fringes appear, 
which would be the signature of a stacked system with 2 distinct lattice parameters. This indicates 
the strain gradient observed through RHEED still persists even in a TEM foil. The domain sizes of 
Sb2Te3 and GeTe are difficult to estimate, but it is clear the domain size in GeTe is significantly 
smaller, which can be seen from both the real-space image, and the diffraction rings, where for 
Sb2Te3 distinct spots belonging to a specific domain can be observed.

                   

Figure S5. ab and cd show bilayers of Sb2Te3 on Bi2Te3 and GeTe on Bi2Te3 respectively. The layers were 
sufficiently thick to allow a full relaxation curve to be recorded with RHEED. ac show plan-view TEM, 



revealing some regions with disordered moiré, and small domains in GeTe compared to Sb2Te3. bd 
Shows the diffraction patterns of ac, revealing broadened rings, with distinct spots visible for Sb2Te3 
due to its larger domain size compared to the one for GeTe.
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