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Supporting information for methods 

Density functional theory (DFT) calculations 

In this work, we used the localized orbital density functional theory implemented within the 

SIESTA package.1 To include the van der Waals (vdW) interactions between atoms in different 

layers, the pseudo-potentials were corrected by adding the DRSLL-vdW interactions2 and 

generated with Atom program3 under Troullier-Martins scheme.

All DFT calculations were performed after connecting hydrogen atoms to all edge-carbon atoms 

to compensate the sp2 dangling bonds4 and thus to avoid strong edge deformation which could 

generate unexpected states in the gap due to the charge transfer effect. This is also consistent with 

the treatment of the Force Constant or Tight Binding model herein the truncation at the edges is 

usually considered with extended lines of carbon atoms on each side of the edges to compensate 

the sp2 dangling bonds of the edge carbon atoms, and these extended lines are treated as hard walls 

that do not impact on the results of tight binding calculations. 

Additionally, in all structures, lattice vectors along x, y directions (perpendicular to the fiber axis) 

were set sufficient large (40 Angstrom) to avoid interactions between the system and its images 

because of the periodic boundary condition.

In all DFT calculations, the double Zeta polarized (DZP) orbital basis set was used and a mesh 

energy cutoff of 400 Ry was taken. A Monkhorst-Pack5 1×1×10 was chosen for the relax 

calculations, while for the band structure and transport studies a grid 1×1×20 was adopted. All 

structures were relaxed within conjugate-gradients (CG) method until the total force was less than 
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0.05 eV/Angstrom. The variable cell in relaxation was also set up to search for an appropriate 

equilibrium distance between graphite layers.

Force Constant (FC) model

For the study of phonons, we employed a Force Constant (FC) model in which the secular equation 

for phonons is written: 

(S1)2 ,D U U

where  is the column matrix containing the amplitude vectors of vibration at all lattice sites and U

 is the angular frequency, D is the Dynamical matrix which is calculated as 6,7 
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The coupling tensor  between the i-th and j-th atoms is defined depending on whether the type ijK

of interaction is in-plane or inter-plane, i.e.

(i) For in-plane interactions,  is determined by a unitary in-plane rotation  6,7
ijK
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is the rotation matrix 7 and is the anticlockwise rotating angle formed between the the x-axis ij

and the vector joining the i-th to the j-th atoms. In equation (S3), is the force constant tensor 0
ijK

that contains the force constant parameters 7
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where are the force constant coupling parameters in the radial, in-plane and out-of-, , and
i or t t  

plane directions, respectively, and their values usually decay with the neighboring distance. In this 

work, a four nearest neighbor range was considered and thus twelve parameters for in-plane 

coupling was taken from Ref.8. 

(ii) For the vdW or interlayer interactions, we employed the spherically symmetric interatomic 

potential model, in which each component of the coupling tensor  is defined by:9 ijK
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with . is the vector joining the i-th to the j-th atoms and  is the decaying , ' 1,3 or , ,k k x y z ijr  ijr

component  with empirical parameters , . It    ij ij.exp /r A r B   573.76 N/mA  0.05 nmB 

should be noted that equation (S5) does not contain the minus sign “-“ as in ref. 9 because this sign 

has been included in equation (S2). Moreover, to have the best fit between the FC model and the 

experimental data for bulk graphite, in the FC model the distance between two graphite layers was 

taken equal to 0.328 nm.

Green’s function formalism for transport study

To study the transport properties of both electrons and phonons, the atomistic Green’ function 

formalism was employed.10 All device structures were divided into three parts: the left and right 

leads and the device region (central region). The leads were treated as semi-infinite regions while 
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the central region is a finite region containing the left lead extension, the active region, and the 

right lead extension. In our calculations, the left (right) lead extension was chosen of the size of 

one unit cell (6.56 Angstrom) that is enough to make the left (right) lead isolated from the active 

region. The active (or scattering) region contains NA unit cells with the length  where A A zL N a 

. 0.656 nmza 

The Hamiltonian H or the Dynamical matrix and the overlap matrix S  of the whole device structure 

were split into three parts HL, HD, HR and SL, SD, SR (similarly DL, DD, DR for phonons) as the 

Hamiltonians and overlap matrices of the left lead, device part(central region) and right lead, 

respectively, including the couplings between the device and the two leads HDL, HDR, SDL, and SDR 

(DDL, DDR for phonons). The Green's function of the device region is defined by the equation
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are the surface self-energies describing the energy-dependent coupling with the left and right leads. 

 is the surface Green’s function of the isolated left (right) lead.11,12  
0

L RG

For phonons, we just need to replace energy E by , and HD, HDL, HLD, HDR, HRD by DD, DDL, 2

DLD, DDR, DRD, respectively. We also set  for phonons.SD  1,SDL  SLD  SDR  SRD  0

The size of the device Green's function was reduced by making use of the recursive technique. 13,14 

The electron (phonon) transmission was computed as 15
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The electrical conductance, the Seebeck coefficient and the electron thermal conductance were 

computed within the Landauer-Onsager's approach, i.e,16
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where the intermediate functions Ln may be written in the form 6,15,17
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Boltzmann constant.

Similarly, the Landauer-like formula was used to compute the phonon thermal conductance 15,16
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Finally, to assess the thermoelectric ability of a structure, the figure of merit ZT is used as the 

essential criterion and is calculated as 6,18,19
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The electronic relaxation and band structure calculations were performed within the SIESTA 

module while the electron transmission was implemented with TransSIESTA module of the 

SIESTA package. The Force Constant model and Green’s function technique for phonons were 

treated within our house-made code. We also used the Virtual Nanolab (VNL) 20 as a graphic user 

interface for the SIESTA code.

Supporting information for additional results

To validate the FC model, we performed phonon dispersion calculations and compared the results 

to the experimental data of ref. 21. Since the direction of interest in this work is along the c-axis, 

we focussed on the phonon bands along the GA k-path (see figure S1(b)). As it can be seen in 

figure S1(c), the solid black lines obtained from the FC model are in excellent agreement with the 

experimental data, demonstrating the quality of this model.

Remarkably, the phonon frequency range along the c-axis is much shorter than along other axes 21, 

confirming that the vdW interaction between graphite layers is very weak.

In figure S2, the phonon conductance of the structure [ 6, 10A ZM M  ] with 50% isotope doping 

is presented. It also exhibits a similar trend as in the structure [ 4, 5A ZM M  ] with a suppression 

of in longer devices.  pK
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Figure S1. (a) Example of 3x3x2 unit cells of bulk graphite. (b) Brillouin zone of bulk graphite, 

generated using the Xcrysden software.22 (c) Validation of the FC model for graphite by 

comparison with the experimental data of ref. 21.
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Figure S2. Phonon conductance as a function of temperature obtained for the structure of cross-

section [ 6, 10A ZM M  ].
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