Supplementary Information

High-performance liquid chromatography mass spectrometry of gold and alloy clusters protected by hydrophilic thiolates

Yoshiki Niihori, Daisuke Shima, Kana Yoshida, Kota Hamada, Lakshmi V. Nair, Sakiat Hossain, Wataru Kurashige and Yuichi Negishi*

^aDepartment of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1–3 Kagurazaka, Shinjuku–ku, Tokyo 162–8601, Japan.

^bPhotocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278–8510, Japan.

Corresponding Author E-mail: negishi@rs.kagu.tus.ac.jp; Tel: +81-3-5228-9145; Fax: +81-3-5261-4631

1. Additional Tables

Table S1. Number of Au Atoms and Ligands, Charge States, and Estimated Number of Valence Electrons for $Au_n(SG)_m$ Clusters Observed in LC/MS Experiments.

Number of	Number of	Charge	Number of	Intensity ^c
Au atoms ^{<i>a</i>}	ligands ^a	states ^a	valence electrons ^b	Intensity
10	10	0	- ^d	strong
10	11	-1	- ^d	weak
11	11	0	- ^d	strong
11	12	-1	- 4	weak
12	12	0	- 4	strong
12	13	-1	- 4	weak
13	13	0	- 4	weak
13	14	-1	d	weak
15	13	0	2	strong
16	14	0	2	middle
16	15	-1	2	weak
17	14	-1	4	weak
18	14	0	4	strong
18	15	-1	4	middle
19	15	0	4	middle
19	16	-1	4	weak
20	16	0	4	middle
20	17	-1	4	weak
21	16	-1	6	weak
21	17	0	4	weak
22	16	0	6	weak
22	17	-1	6	middle
23	17	0	6	strong
24	18	0	6	middle
25	18	-1	8	strong
25	20	-1	6	weak
26	19	-1	8	weak
27	19	0	8	weak
27	20	-1	8	weak
29	20	-1	10	strong
30	21	-1	10	middle

31	22	-1	10	middle
32	$\frac{22}{22}$	0	10	middle
32	$\frac{22}{23}$	-1	10	middle
33	23	-1	12	strong
33	$\frac{22}{23}$	0	10	middle
34	23	-1	12	strong
34	23	0	10	weak
34	25	-1	10	weak
35	23	-1	14	weak
35	$\frac{22}{24}$	-1	12	middle
36	23	-1	14	weak
36	23	0	12	weak
36	25	-1	12	weak
37	23	-1	12	strong
37	25	-1	17	weak
38	23	0	12	strong
38	25	-1	14	middle
39	23	-1	16	strong
39	25	-1 _e		weak
39	25	e	_ e	weak
40	20	e	_ e	weak
40	25	e	_ e	weak
40	20	e	e	weak
40	26	e	_ e	strong
42	20	e	e	weak
42	20	e	_ e	middle
43	26	e	e	weak
43	20	e	_ e	weak
44	27	e	e	middle
44	28	e	_ e	weak
45	20	- ^e	_ <i>e</i>	weak
45	28	_ e	_ <i>e</i>	weak
46	28	- ^e	_ <i>e</i>	strong
46	29	- ^e	- ^e	middle
47	28	- ^e	_ <i>e</i>	middle
47	29	- ^e	_ <i>e</i>	weak
48	29	_ e	_ <i>e</i>	middle
49	29	_ e	_ e	weak
49	30	_ e	_ <i>e</i>	weak
50	30	_ <i>e</i>	_ <i>e</i>	weak
51	30	_ <i>e</i>	- ^e	weak
52	31	_ <i>e</i>	_ <i>e</i>	weak
54	31	- ^e	- ^e	weak

^{*a*}These values were estimated by the analyses of ESI mass spectra (Figure 1 and S11–S13). ^{*b*}These values were estimated using the equation described in literature¹ on the basis of the number of Au atoms and ligands and the charge states. ^{*c*}Ion intensities in mass spectra. ^{*d*}These species are considered to be metal–thiolate complex without metal core. ^{*e*}For these clusters, it is difficult to estimate the charge state and thereby the number of valence electrons with confidence because of quite a low ion intensity in the mass spectra.

	Num	ber of		Charge	Number of	Experimental	• . • d
Metal	Au	Ag	Ligands	states ^{<i>a</i>}	valence electrons ^b	condition ^c	Intensity "
10	9	1	10	0	e	I, II, III	strong
10	8	2	10	0	- ^e	I, II, III	strong
10	7	3	10	0	- ^e	III	strong
10	6	4	10	0	- ^e	III	strong
11	10	1	11	0	- ^e	I, II, III	strong
11	9	2	11	0	- ^e	I, II, III	strong
11	8	3	11	0	- ^e	III	strong
11	7	4	11	0	- ^e	III	strong
11	6	5	11	0	- 6	III	strong
12	11	1	12	0	- ^e	I, II, III	strong
12	10	2	12	0	- ^e	I, II, III	strong
12	9	3	12	0	_ e	III	strong
15	14	1	13	0	2	I, II, III	strong
15	13	2	13	0	2	I, II, III	strong
15	12	3	13	0	2	I, II, III	strong
15	11	4	13	0	2	III	strong
16	15	1	14	0	2	I, II	weak
16	14	2	14	0	2	Ι	weak
18	17	1	14	0	4	I, II	strong
18	16	2	14	0	4	I, II, III	strong
18	15	3	14	0	4	II, III	strong
18	14	4	14	0	4	II, III	strong
18	13	5	14	0	4	III	strong
18	12	6	14	0	4	III	strong
18	16	2	15	-1	4	II, III	middle
18	15	3	15	-1	4	II, III	middle
18	14	4	15	-1	4	III	middle
18	13	5	15	-1	4	III	middle
19	18	1	15	0	4	I, II	weak
19	17	2	15	0	4	I, II	weak
19	16	3	15	0	4	II	weak
19	15	4	16	-1	4	III	weak
19	14	5	16	-1	4	III	weak
19	13	6	16	-1	4	III	weak
19	12	7	16	-1	4	III	weak
20	19	1	15	-1	6	I, II	weak
20	19	1	16	0	4	II	weak
21	20	1	16	-1	6	I, II, III	middle
21	19	2	16	-1	6	I, II, III	middle
21	18	3	16	-1	6	I, II, III	middle
21	17	4	16	-1	6	II, III	middle
21	16	5	16	-1	6	III	middle
22	21	1	16	0	6	I, II	weak
22	20	2	16	0	6	I, II	weak
22	21	1	17	-1	6	Ι	weak
22	20	2	17	-1	6	Ι	weak
22	19	3	17	-1	6	Ι	weak
22	18	4	17	-1	6	II, III	weak
22	17	5	17	-1	6	II, III	weak
22	16	6	17	-1	6	II, III	weak
22	15	7	17	-1	6	II, III	weak
23	22	1	17	0	6	Í, II	strong
23	21	2	17	0	6	I, II	strong
23	20	3	17	0	6	II, III	strong
23	19	4	17	0	6	II, III	strong
23	18	5	17	0	6	II. III	strong
23	17	6	17	Ō	6	III	strong
23	17	6	18	-1	6	III	middle

Table S2. Number of Metal Atoms and Ligands, Charge States, and Estimated Number	of Valence
Electrons for Au _{n-x} Ag _x (SG) _m Clusters Observed in LC/MS Experiments.	

23	16	7	18	-1	6	III	middle	
23	15	8	18	-1	6	III	middle	
24	23	1	18	0	6	Ι	weak	
24	22	2	18	0	6	Ι	weak	
24	21	3	18	0	6	II	weak	
24	20	4	18	0	6	II	weak	
24	19	5	18	0	6	II	weak	
25	24	1	18	-1	8	I, II	strong	
25	23	2	18	-1	8	I, II	strong	
25	22	3	18	-1	8	I, II, III	strong	
25	21	4	18	-1	8	I, II, III	strong	
25	20	5	18	-1	8	II, III	strong	
25	19	6	18	-1	8	II, III	strong	
25	18	7	18	-1	8	III	strong	
25	17	8	18	-1	8	III	strong	
26	25	1	18	0	8	Ι	weak	
29	28	1	20	-1	10	I, II	strong	
29	27	2	20	-1	10	I, II	strong	
29	26	3	20	-1	10	I, II, III	strong	
29	25	4	20	-1	10	III	strong	
29	24	5	20	-1	10	III	strong	
29	23	6	20	-1	10	III	strong	
29	22	7	20	-1	10	III	strong	
29	21	8	20	-1	10	III	strong	
29	20	9	20	-1	10	111	strong	

^{*a*}These values were estimated by the analyses of negative-ion ESI mass spectra (Figures S24–S26). ^{*b*}These values were estimated using the equation described in literature¹ on the basis of the number of Au atoms and ligands and the charge states. ^{*c*}Initial metal ion ratios of [HAuCl₄]:[AgNO₃]. I–III represents 24.5:0.5, 23:2, and 21:4, respectively. ^{*d*}Ion intensities in mass spectra. ^{*e*}These species are considered to be metal–thiolate complex without metal core.

weak weak weak niddle weak weak
weak weak weak niddle weak weak
weak weak niddle weak weak
weak niddle weak weak
niddle weak weak
weak weak
weak
strong
Juong
strong
strong
weak
weak
niddle
niddle
strong
strong
strong
niddle
weak
niddle
niddle
weak
weak
nıddle
strong
strong
niddle
niddle
niddle
niddle
strong
weak
suong
strong
strong
suong
\$ * * UU\$ \$ \$ U * * * * * * * * U * * * U * * * S 5 * * * * * * * * * * * * * * *

Table S3. Number of Metal Atoms and Ligands, Charge States, and Estimated Number of Valence Electrons for $Au_{n-x}Cu_x(SG)_m$ Clusters Observed in LC/MS Experiments.

^{*a*}These values were estimated by the analyses of negative-ion ESI mass spectra (Figures S32 and S33). ^{*b*}These values were estimated using the equation described in literature¹ on the basis of the number of Au atoms and ligands and the charge states. ^{*c*}Initial metal ion ratios of [HAuCl₄]:[CuCl₂]. I–III represents 24.5:0.5, 23:2, and 21:4, respectively. ^{*d*}Ion intensities in mass spectra. ^{*e*}These species are considered to be metal–thiolate complex without metal core.

Number of		Charge	Number of	Experimental	Tradient and		
Metal	Au	Pd	Ligands	states ^a	valence electrons ^b	condition ^c	Intensity
6	4	2	8	0	- ^e	II	strong
7	2	5	12	0	_ <i>e</i>	II	strong
9	8	1	10	0	_ <i>e</i>	Ι	middle
9	7	2	10	0	_ <i>e</i>	Ι	weak
10	9	1	10	-1	_ <i>e</i>	I, II	strong
11	10	1	11	-1	_ <i>e</i>	I, II	strong
12	8	4	14	0	- ^e	II	weak
13	12	1	12	0	_ <i>e</i>	II	weak
13	10	3	14	0	_ e	I, II	weak
14	12	2	14	0	_ <i>e</i>	Í, II	weak
14	11	3	14	-1	_ <i>e</i>	Ĩ	weak
15	14	1	13	-2	3	I, II	strong
15	14	1	14	0	_ <i>e</i>	I, II	middle
16	15	1	15	0	_ <i>e</i>	ÎI	weak
17	16	1	16	0	_ e	Ι	weak
17	15	2	16	-1	_ <i>e</i>	II	middle
18	17	1	14	-1	4	II	strong
18	16	2	14	-3	5	I, II	strong
18	17	1	16	-1	_ e	II	weak
18	16	2	17	-1	_ <i>e</i>	II	middle
19	18	1	15	-1	4	Ι	weak
19	18	1	16	0	2	I, II	weak
19	17	2	16	-1	2	Ι	weak
19	18	1	17	-1	2	I, II	weak
20	18	2	17	-1	2	Ι	weak
20	17	3	18	-1	0	II	weak
21	20	1	17	-1	4	I, II	weak
21	19	2	17	0	2	II	weak
21	19	2	18	-1	2	I, II	weak
23	22	1	17	-1	6	Ι	weak
23	22	1	18	0	4	I, II	weak
23	20	3	19	-1	2	II	middle
25	24	1	18	-2	8	I, II	strong
25	24	1	19	-1	6	Ι	middle
25	23	2	20	-1	4	II	middle
26	25	1	20	-1	6	Ι	middle
29	28	1	20	-1	10	Ι	strong

Table S4. Number of Metal Atoms and Ligands, Charge States, and Estimated Number of Valence Electrons for $Au_{n-x}Pd_x(SG)_m$ Clusters Observed in LC/MS Experiments.

^{*a*}These values were estimated by the analyses of negative-ion ESI mass spectra (Figures S39 and S40). ^{*b*}These values were estimated using the equation described in literature¹ on the basis of the number of Au atoms and ligands and the charge states. ^{*c*}Initial metal ion ratios of [HAuCl₄]:[PdCl₂·2NaCl]. I, II represents 24.5:0.5 and 21:4, respectively. ^{*d*}Ion intensities in mass spectra. ^{*e*}These species are considered to be metal-thiolate complex without metal core.

2. Additional Schemes

Scheme S1. Comparison of HPLC columns. (a) Reverse-phase column and (b) HILIC column.²

Scheme S2. Structures of thiols used in this work. (a) Glutathione (GSH),³ (b) *N*-acetyl-L-cysteine (NALC),⁴ and (c) *p*-mercaptobenzoic acid $(p-MBA)^5$.

3. Additional Figures

Figure S1. PAGE photograph of as-prepared $Au_n(SG)_m$ clusters used in the experiment depicted in Figure 1 and 2. The tentative assignments of $Au_n(SG)_m$ clusters in the literature³ are described in the form of (n, m) on the left.

Figure S2. PAGE photograph of as-prepared $Au_{n-x}Ag_x(SG)_m$ clusters used in the experiments illustrated in Figure 5(a) and 6(a); [HAuCl₄]:[AgNO₃] = (a) 25:0, (b) 24.5:0.5, (c) 23:2, and (d) 21:4. The tentative assignments of $Au_n(SG)_m$ clusters in the literature³ are described in the form of (n, m) on the left.

Figure S3. PAGE photograph of as-prepared $Au_{n-x}Cu_x(SG)_m$ clusters used in the experiments shown in Figure 5(b) and 6(b); [HAuCl₄]:[CuCl₂] = (a) 25:0, (b) 24.5:0.5, (c) 23:2, and (d) 21:4. The tentative assignments of $Au_n(SG)_m$ clusters in the literature³ are described in the form of (n, m) on the left.

Figure S4. PAGE photograph of as-prepared $Au_{n-x}Pd_x(SG)_m$ clusters used in the experiments depicted in Figure 5(c) and 6(c); [HAuCl₄]:[PdCl₂·2NaCl] = (a) 25:0, (b) 24.5:0.5, and (c) 21:4. The tentative assignments of $Au_n(SG)_m$ clusters in the literature³ are described in the form of (n, m) on the left.

Figure S5. Dependence of the chromatograms of $Au_n(SG)_m$ clusters on the mobile phase in the experiments using an Amide-80 column. R_s indicates the resolution estimated using peaks of $Au_{10-12}(SG)_{10-12}$ and $Au_{15}(SG)_{13}$.⁶ In the chromatogram, the peak position of each $Au_n(SG)_m$ cluster is described in the form of (n, m).

Figure S6. Dependence of the chromatograms of $Au_n(SG)_m$ clusters on the concentration of AcONH₄. R_s indicates the resolution estimated using peaks of $Au_{10-12}(SG)_{10-12}$ and $Au_{15}(SG)_{13}$.⁶ In the chromatogram, the peak position of each $Au_n(SG)_m$ cluster is described in the form of (n, m).

Figure S7. Dependence of the chromatograms of $Au_n(SG)_m$ clusters on the column. (a) Amide-80 and (b) ZICcHILIC columns. R_s indicates the resolution estimated using peaks of $Au_{10-12}(SG)_{10-12}$ and $Au_{15}(SG)_{13}$.⁶ In the chromatogram, the peak position of each $Au_n(SG)_m$ cluster is described in the form of (n, m).

Figure S8. Comparison of optical absorption spectra of $Au_n(SG)_m$ clusters between (blue) **i**–v**i** in Figure 1 and (gray) the literature.³ The chemical compositions reported in the literature³ are shown in gray.

Figure S9. Dependence of the chromatograms of $Au_n(SG)_m$ clusters on the mobile phase in the experiments using a ZIC-cHILIC column. R_s indicates the resolution estimated using peaks of $Au_{10-12}(SG)_{10-12}$ and $Au_{15}(SG)_{13}$.⁶ In the chromatogram, the peak position of each $Au_n(SG)_m$ cluster is described in the form of (n, m).

Figure S10. Comparison of the obtained chromatograms between (a) this work using the Amide-80 column and (b) previous work using a reverse-phase column (Hypersil GOLD) without an ion-pair reagent.⁷ The chromatogram obtained using the Amide-80 column shows the opposite elution order to that obtained using the reverse-phase column, demonstrating that the $Au_n(SG)_m$ clusters were separated into each cluster type by the HILIC mode² in this study.

Figure S11. Enlarged positive-ion ESI mass spectra of $Au_n(SG)_m$ clusters (n = 10-29) used for Figure 4 (Table S1). Because both negative- and positive-ion ESI mass spectra showed the same chemical compositions for the same $Au_n(SG)_m$ clusters (Figure 1 and 2), the chemical compositions of $Au_n(SG)_m$ clusters used in Figure 4 were estimated using positive-ion ESI mass spectrometry as it has a high signal/noise ratio (Figure 2). In this experiment, the mobile phase was gradually changed using a linear gradient program from a mixture of 100-mM AcONH₄ aqueous solution and MeCN (50:50) to a mixture of 100-mM AcONH₄ aqueous solution and MeCN (84:16) with 380 min. This gradient elution was carried out to elute the larger $Au_n(SG)_m$ clusters within a narrow retention time and thereby increase the intensity of their ion peaks in the mass spectra.

Figure S12. Enlarged positive-ion ESI mass spectra of $Au_n(SG)_m$ clusters (n = 30-45) used for Figure 4 (Table S1). Because both negative- and positive-ion ESI mass spectra showed the same chemical compositions for the same $Au_n(SG)_m$ clusters (Figure 1 and 2), the chemical compositions of $Au_n(SG)_m$ clusters used in Figure 4 were estimated using positive-ion ESI mass spectrometry as it has a high signal/noise ratio (Figure 2). In this experiment, the mobile phase was gradually changed using a linear gradient program from a mixture of 100-mM AcONH₄ aqueous solution and MeCN (50:50) to a mixture of 100-mM AcONH₄ aqueous solution and MeCN (84:16) with 380 min. This gradient elution was carried out to elute the larger $Au_n(SG)_m$ clusters within a narrow retention time and thereby increase the intensity of their ion peaks in the mass spectra. For the larger $Au_n(SG)_m$ clusters (n > 39), it was difficult to estimate the charge state without ambiguity (Table S1).

Figure S13. Enlarged positive-ion ESI mass spectra of $Au_n(SG)_m$ clusters (n = 45-54) used for Figure 4 (Table S1). Because both negative- and positive-ion ESI mass spectra showed the same chemical compositions for the same $Au_n(SG)_m$ clusters (Figure 1 and 2), the chemical compositions of $Au_n(SG)_m$ clusters used in Figure 4 were estimated using positive-ion ESI mass spectrometry as it has a high signal/noise ratio (Figure 2). To observe these clusters, the mobile phase was gradually replaced using a linear gradient program from a mixture of 100-mM AcONH₄ aqueous solution and MeCN (50:50) to a mixture of 100-mM AcONH₄ aqueous solution and MeCN (84:16) with 380 min. This gradient elution was carried out to elute the larger $Au_n(SG)_m$ clusters within a narrow retention time and thereby increase the intensity of their ion peaks in the mass spectra. For these larger $Au_n(SG)_m$ clusters, it was difficult to estimate the charge state without ambiguity (Table S1).

Figure S14. Optical absorption spectra observed using a PDA for $Au_{(10-12)-x}Ag_x(SG)_{10-12}$ clusters prepared with metal ion ratios of [HAuCl₄]:[AgNO₃] of 25:0, 24.5:0.5, 23:2, and 21:4.

Figure S15. Optical absorption spectra observed using a PDA for $Au_{15-x}Ag_x(SG)_{13}$ clusters prepared with metal ion ratios of [HAuCl₄]:[AgNO₃] of 25:0, 24.5:0.5, 23:2, and 21:4.

Figure S16. Optical absorption spectra observed using a PDA for $Au_{18-x}Ag_x(SG)_{14}$ clusters prepared with metal ion ratios of [HAuCl₄]:[AgNO₃] of 25:0, 24.5:0.5, 23:2, and 21:4. The observed structural change depending on the ion ratios is consistent with that reported by Xie and co-workers.⁸

Figure S17. Optical absorption spectra observed using a PDA for $Au_{25-x}Ag_x(SG)_{18}$ clusters prepared with metal ion ratios of [HAuCl₄]:[AgNO₃] of 25:0, 24.5:0.5, 23:2, and 21:4. The observed structural change depending on the ion ratio is consistent with that reported by Xie and co-workers for $Au_{25-x}Ag_x(SR)_{18}$ (R = 6-mercaptohexanoic acid, etc.).⁹

Figure S18. Optical absorption spectra observed using a PDA for $Au_{29-x}Ag_x(SG)_{20}$ clusters prepared with metal ion ratios of [HAuCl₄]:[AgNO₃] of 25:0, 24.5:0.5, 23:2, and 21:4.

Figure S19. Assignments of negative-ion ESI mass spectra of $[Au_{(10-12)-x}Ag_x(SG)_{10-12}-3H]^{3-}$.

Figure S20. Assignments of negative-ion ESI mass spectrum of $[Au_{15-x}Ag_x(SG)_{13}-4H]^{4-}$ (x = 2, 3) prepared with a metal ion ratio of $[HAuCl_4]$: [AgNO₃] of 23:2.

Figure S21. Assignments of negative-ion ESI mass spectrum of $[Au_{18-x}Ag_x(SG)_{14}-4H]^{4-}$ (x = 2, 3) prepared with a metal ion ratio of $[HAuCl_4]$: [AgNO₃] of 23:2.

Figure S22. Assignments of negative-ion ESI mass spectrum of $[Au_{25-x}Ag_x(SG)_{18}-4H]^{5-}$ (x = 3, 4) prepared with a metal ion ratio of $[HAuCl_4]$: [AgNO₃] of 23:2.

Figure S23. Assignments of negative-ion ESI mass spectrum of $[Au_{29-x}Ag_x(SG)_{20}-4H]^{5-}$ (x = 2, 3) prepared with a metal ion ratio of $[HAuCl_4]$: [AgNO₃] of 23:2.

Figure S24. Enlarged negative-ion ESI mass spectra of $Au_{n-x}Ag_x(SG)_m$ clusters (n = 10-19; Table S2). In this experiment, the mobile phase was flowed with a constant mixing ratio (isocratic mode).

Figure S25. Enlarged negative-ion ESI mass spectra of $Au_{n-x}Ag_x(SG)_m$ clusters (n = 19-24; Table S2). In this experiment, the mobile phase was flowed with a constant mixing ratio (isocratic mode).

Figure S26. Enlarged negative-ion ESI mass spectra of $Au_{n-x}Ag_x(SG)_m$ clusters (n = 24-29; Table S2). In this experiment, the mobile phase was flowed with a constant mixing ratio (isocratic mode).

Figure S27. Assignments of negative-ion ESI mass spectra of $[Au_{(10-12)-x}Cu_x(SG)_{10-12}-3H]^{3-}$.

Figure S28. Assignments of negative-ion ESI mass spectrum of $[Au_{15-x}Cu_x(SG)_{13}-4H]^{4-}$ (x = 0, 1) prepared with a metal ion ratio of $[HAuCl_4]$: [CuCl_2] of 21:4.

Figure S29. Assignments of negative-ion ESI mass spectrum of $[Au_{18-x}Cu_x(SG)_{14}-4H]^{4-}$ (x = 1, 2) prepared with a metal ion ratio of $[HAuCl_4]$: $[CuCl_2]$ of 21:4.

Figure 30. Assignments of negative-ion ESI mass spectrum of $[Au_{25-x}Cu_x(SG)_{18}-4H]^{5-}$ (x = 2, 3) prepared with a metal ion ratio of $[HAuCl_4]$: [CuCl_2] of 21:4.

Figure S31. Assignments of negative-ion ESI mass spectrum of $[Au_{29-x}Cu_x(SG)_{20}-4H]^{5-}$ (x = 0, 1) prepared with a metal ion ratio of $[HAuCl_4]$: $[CuCl_2]$ of 21:4.

Figure S32. Enlarged negative-ion ESI mass spectra of $Au_{n-x}Cu_x(SG)_m$ clusters (n = 9-23; Table S3). In this experiment, the mobile phase was flowed with a constant mixing ratio (isocratic mode).

Figure S33. Enlarged negative-ion ESI mass spectra of $Au_{n-x}Cu_x(SG)_m$ clusters (n = 23-29; Table S3). In this experiment, the mobile phase was flowed with a constant mixing ratio (isocratic mode).

Figure S34. Assignments of negative-ion ESI mass spectra of $[Au_{(10-12)-x}Pd_x(SG)_{10-12}-3H]^{3-}$.

Figure S35. Assignments of negative-ion ESI mass spectrum of $[Au_{15-x}Pd_x(SG)_{13}-4H]^{4-}$ (x = 0, 1) prepared with a metal ion ratio of $[HAuCl_4]$: [PdCl₂·2NaCl] of 21:4.

Figure S36. Assignments of negative-ion ESI mass spectrum of $[Au_{18-x}Pd_x(SG)_{14}-4H]^{4-}$ (x = 0, 1) prepared with a metal ion ratio of $[HAuCl_4]$: [PdCl_2·2NaCl] of 21:4.

Figure S37. Assignments of negative-ion ESI mass spectrum of $[Au_{25-x}Pd_x(SG)_{18}-4H]^{5-}$ (x = 0, 1) prepared with a metal ion ratio of $[HAuCl_4]$: $[PdCl_2 \cdot 2NaCl]$ of 21:4.

Figure S38. Assignments of negative-ion ESI mass spectrum of $[Au_{29-x}Pd_x(SG)_{20}-4H]^{5-}$ (x = 0, 1) prepared with a metal ion ratio of $[HAuCl_4]$: $[PdCl_2 \cdot 2NaCl]$ of 21:4.

Figure S39. Enlarged negative-ion ESI mass spectra of $Au_{n-x}Pd_x(SG)_m$ clusters (n = 6-23; Table S4). In this experiment, the mobile phase was flowed with a constant mixing ratio (isocratic mode).

Figure S40. Enlarged negative-ion ESI mass spectra of $Au_{n-x}Pd_x(SG)_m$ clusters (n = 25-29; Table S4). In this experiment, the mobile phase was flowed with a constant mixing ratio (isocratic mode).

Figure S41. (a) UV chromatogram obtained for $Au_n(NALC)_m$ clusters using LC/MS with an Amide-80 column and (b) negative-ion ESI mass spectra of fractions **i**"-v" in the UV chromatogram in (a). In this study, the mobile phase was gradually replaced using a linear gradient program from a mixture of 100-mM AcONH₄ aqueous solution and MeCN (43:57) to a mixture of 100-mM AcONH₄ aqueous solution and MeCN (73:27) with 600 min. This gradient elution was carried out to elute the larger $Au_n(NALC)_m$ clusters within a narrow retention time and thereby increase the intensity of their ion peaks in the mass spectra. In (b), only the main peaks are assigned. The notation $(n, m)^{2^-}$ indicates $[Au_n(NALC)_m]^{2^-}$. For these clusters, the charge states of the metal core could not be determined because of the limited resolution of the quadrupole mass spectrometer (Waters, SQD2) used in this work.

Figure S42. (a) UV chromatogram obtained for $Au_n(p-MBA)_m$ clusters using LC/MS with an Amide-80 column and (b) negative-ion ESI mass spectra of peaks **i**^{**}-**iii**^{**} in the UV chromatogram in (a). In this study, the mobile phase was gradually replaced using a linear gradient program from a mixture of 100-mM AcONH₄ aqueous solution and MeCN (45:55) to a mixture of 100-mM AcONH₄ aqueous solution and MeCN (75:25) with 300 min. This gradient elution was carried out to elute the larger $Au_n(p-MBA)_m$ clusters within a narrow retention time and thereby increase the intensity of their ion peaks in the mass spectra. In (b), only the main peaks are assigned. For these clusters, the charge states of the metal core could not be determined because of the limited resolution of the quadrupole mass spectrometer (Waters, SQD2) used in this work.

Figure S43. (a) UV chromatogram obtained for $Ag_n(SG)_m$ clusters using LC with an Amide-80 column and (b) optical absorption spectrum of each peak (i^{***}-x^{***}). In this study, the mobile phase was gradually replaced using a linear gradient program from a mixture of 100-mM AcONH₄ aqueous solution and MeCN (40:60) to a pure 100-mM AcONH₄ aqueous solution with 120 min.

4. References

- (1) M. Walter, J. Akola, O. Lopez-Acevedo, P. D. Jadzinsky, G. Calero, C. J. Ackerson, R. L. Whetten, H. Grönbeck and H. Häkkinen, *Proc. Natl. Acad. Sci. U. S. A.*, 2008, **105**, 9157–9162.
- (2) B. Buszewski and S. Noga, Anal. Bioanal. Chem., 2012, 402, 231-247.
- (3) Y. Negishi, K. Nobusada and T. Tsukuda, J. Am. Chem. Soc., 2005, 127, 5261-5270.
- (4) M. M. F. Choi, A. D. Douglas and R. W. Murray, Anal. Chem., 2006, 78, 2779-2785.
- (5) D. M. Black, M. M. Alvarez, F. Yan, W. P. Griffith, G. Plascencia-Villa, S. B. H. Bach and R. L. Whetten, J. Phys. Chem. C, 2017, 121, 10851–10857.
- (6) Y. Niihori, M. Matsuzaki, C. Uchida and Y. Negishi, Nanoscale, 2014, 6, 7889-7896.
- (7) Y. Niihori, Y. Kikuchi, D. Shima, C. Uchida, S. Sharma, S. Hossain, W. Kurashige and Y. Negishi, *Ind. Eng. Chem. Res.*, 2017, **56**, 1029–1035.
- (8) Y. Yu, Q. Yao, T. Chen, G. X. Lim and J. Xie, J. Phys. Chem. C, 2016, 120, 22096-22102.
- (9) X. Dou, X. Yuan, Q. Yao, Z. Luo, K. Zheng and J. Xie, Chem. Commun., 2014, 50, 7459-7462.