Supporting information

Coupling Interconnected MoO₃/WO₃ Nanosheets within Graphene

Framework as Highly Efficient Anode for Lithium-Ion Battery

Pengbo Wang, Zhihua Cheng, Guiqin Lv*, Liangti Qu* and Yang Zhao*

Fig. S1 The scanning (SEM) and transmission electron microscopy (TEM) images of the as-prepared (a, b) MoO₃-GF, (c, d) WO₃-GF and (e, f) MoO₃/WO₃.

Fig. S2 The TEM images of the as-prepared (a) MoO₃/WO₃-GF-2/1 and (b) MoO₃/WO₃-GF-1/2, respectively.

Fig. S3 (a) The digital image of MoO_3/WO_3 -GF after hydrothermal treatment in a 300 mL Teflon-line autoclave. (b) Standard PDF card of ε -MoO₃ and tetragonal WO₃.

Fig. S4 X-ray diffraction (XRD) patterns of (a) MoO₃-GF and (b) WO₃-GF.

Fig. S5 The thermogravimetric analysis (TGA) curves of the MoO₃/WO₃-GF and GF in air from 25 to 1000 °C with a temperature ramping rate of 10 °C min⁻¹.

Fig. S6 The N₂ adsorption-desorption isotherm of (a) MoO₃/WO₃-GF and (b) the corresponding pore-size distribution.

Fig. S7 Cycling performances of (a) MoO_3/WO_3 -GF-2/1 and MoO_3/WO_3 -GF-1/2 at 200 mA g⁻¹, and the stable CV curves of (b) MoO_3/WO_3 -GF-2/1 and (c) MoO_3/WO_3 -GF-1/2 at a scan rate of 0.2 mV s⁻¹, respectively.

As shown in Fig. S7a, the reversible discharge capacities of MoO_3/WO_3 -GF-2/1 and MoO_3/WO_3 -GF-1/2 are 619.8 and 393.1 mA h g⁻¹ at 200 mA g⁻¹ over 30 cycles, which are far lower than the as-prepared MoO_3/WO_3 -GF material (Fig. 4b). The corresponding CV curves are shown in Fig. S7b and c. Both the MoO_3/WO_3 -GF-2/1 and MoO_3/WO_3 -GF-1/2 exhibit more significant redox peaks than MoO_3/WO_3 -GF (Fig. 5a) at range of 1.0 ~ 2.0 V. This can be ascribed to that the large MoO_3/WO_3 crystal size and disordered structures may lead to the enhanced of redox peaks, according to previous studies on morphology-dependent electrochemical performances.^{1,2}

Fig. S8 (a) CV curves of MoO₃/WO₃-GF electrode with scan rate from 0.2 to 1 mV s⁻¹. (b) The corresponding log (peak current, i) versus log (sweep rate, v) plots of charge and discharge peak current with scan rate from 0.2 to 1 mV s⁻¹. (c) Voltammetric response at a scan rate of 0.2 mV s⁻¹ and (d) 1 mV s⁻¹ respectively. The capacitive contribution to the total current is shown by the shaded region.

Fig. S9 Electrochemical impedance spectra (EIS) of MoO₃/WO₃-GF before and after cycling.

Fig. S10 The morphology of MoO₃/WO₃-GF after 100 cycles. This image gives the direct evidence of the structural stability of the material after cycling.

Reference

[1] Q. Xia, H. L. Zhao, Z.H. Du, J. Wang, T. H. Zhang, J. Wang and P. P. Lv, *J. Power Sources*, 2013, **226**, 107-111.

[2] M. Okubo, E. Hosono, Jedeok Kim, M. Enomoto, N. Kojima, T. Kudo, H. S. Zhou and I. Honma, *J. Am. Chem. Soc.*, 2007, **129**, 7444-7452.