Zwitterionic peptide-capped gold nanoparticles for colorimetric detection of Ni²⁺

Attasith Parnsubsakul^a, Sukunya Oaew^b*, and Werasak Surareungchai^c*

^aBiological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Thailand

^bBiochemical Engineering and Pilot Plant Research and Development Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Thailand

^cSchool of Bioresources and Technology and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology Thonburi, Thailand

*e-mail: <u>sukunya.oae@biotec.or.th</u>, <u>werasak.sur@kmutt.ac.th</u>

Figure S1. Selectivity of AuNPs-(EK)₃ toward different metal ion species at 25 μ M, pH 8.0, and 45 min reaction time: (a). Photograph of colored AuNPs-(EK)₃ solutions and (b). Abs_{650,520} corresponding to (a).

Figure S2. Photographs of color evolution of AuNPs-(EK)₃ solution due to the aggregation induced by Ni²⁺, Hg²⁺, Zn²⁺, and Cd²⁺ (25 μ M) at different pH.

Figure S3. UV-vis spectra of the AuNPs before (black) and after (red) after being functionalized with (EK)₃-peptide: (a) 30 nm; and (b) 40 nm.

Figure S4. UV-vis spectra of 13-nm AuNPs before (black), and after (red) being functionalized with modified (EK)₃-peptides, and the functionalized AuNPs (blue dash) after exposure to 0.5 M NaCl solution for 1h: Sequences of the modified (EK)₃-peptide are (a) **1** – **EA**EKEKPPPPC, (b) **2** – **acetyl-EKEKEKPPPPC**, (c) **3** – **acetyl-AKEKEKPPPPC**, and (d) **4** – **acetyl-AAEKEKPPPPC**.

NPs	Size	Shape	Sensing ligand	Linear range (nM)	LOD (nM)	Real Samples	Ref
Au	40	Sa	Peptide – (EK) ₃ PPPPC-amide	60 - 160	34	Soil, Urine, Sea water, Tap water, Drink water	This work
Au	12.5	S	Malonic acid	170 - 8,500	51	River water, pond water, tap water	1 (2017)
Ag	Mixed 10 - 60	Pr ^b	GSH ^d	5 - 300	5	Tap water and Lake water	2 (2016)
Ag	~30	Plc	GSH + L-Cysteine	150 - 20,000	120	Waste water	3 (2014)
Au	45	S	NTA + L-Carnosine	17,000 - 240,000	8,500	ND°	4 (2012)
Ag	12	S	N-Acetyl-L-Cysteine	2,000 - 48,000	230	Tap water	5 (2012)
Au	20	S	Peptide – CALNN(H) ₆	1,000 - 5,000	300	River water	6 (2012)
Au	~15	S	GSH	10,000 - 80,000	ND	ND	7 (2012)
Ag	8	S	GSH	100,000 - 1,000,000	75,000	ND	8 (2009)

Table S1. Comparison of NPs-based colorimetric methods for Ni²⁺ detection using metal nanoparticles

^aS = sphere, ^bPr = prism, ^cPl = circle plate, ^dGSH = glutathione and ^eND = not determined

References

- 1. K. Shrivas, P. Maji and K. Dewangan, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 2017, **173**, 630-636.
- 2. N. Chen, Y. Zhang, H. Liu, H. Ruan, C. Dong, Z. Shen and A. Wu, *ACS Sustain. Chem. Eng.*, 2016, 4, 6509-6516.
- 3. T. Kiatkumjorn, P. Rattanarat, W. Siangproh, O. Chailapakul and N. Praphairaksit, *Talanta*, 2014, **128**, 215-220.
- 4. Ž. Krpetić, L. Guerrini, I. A. Larmour, J. Reglinski, K. Faulds and D. Graham, *Small*, 2012, **8**, 707-714.
- 5. Y. Shang, F. Wu and L. Qi, J. Nanopart. Res., 2012, 14, 1169.
- 6. M. Zhang, Y.-Q. Liu and B.-C. Ye, *Analyst*, 2012, **137**, 601-607.
- 7. R. Fu, J. Li and W. Yang, J. Nanopart. Res., 2012, 14, 929.
- 8. H. Li, Z. Cui and C. Han, Sensors. Actuators B Chem., 2009, 143, 87-92.