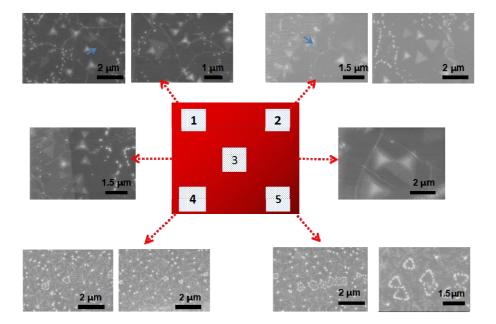
Supporting Information for:

p-type conductivity of hexagonal boron nitride as dielectrically tunable monolayer: modulation doping with magnesium

Feipeng Sun¹, Zhuoran Hao¹, Guozhen Liu¹, Chenping Wu¹, Shengrong Huang^{2,*}, Chuan

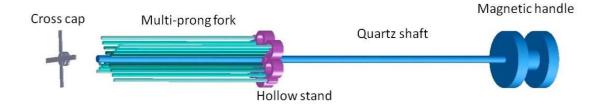
Liu³, Qiming Hong², Xiaohong Chen¹, Duanjun Cai^{*,1,3} and Junyong Kang¹

1Fujian Key Laboratory of Semiconductor Materials and Applications, CI center for OSED,


College of Physical Science and Technology, Xiamen University, Xiamen 361005, China.

2 Xiamen Top-succeed Electronics Technology Co. Ltd., Xiamen 361022, China.

3 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.


4 Department of Chemistry, Duke University, Durham, NC 27708-0354, U.S.A.

* Corresponding author e-mail:<u>dcai@xmu.edu.cn</u>

Fig. S1. SEM image of h-BN layer in different parts of Cu foil. Five representative places show the uniformity and full coverage of h-BN layer on Cu foil.

^{*} Corresponding authors' E-mail: dcai@xmu.edu.cn ,Tel: +86-592-2182172,

Fig. S2. Schematic of multi-prong quartz fork equipped with a magnetic handle and cross cap. The hollow stand is designed for supporting the multi-prong fork and meanwhile, maintaining a fluent gas flow through the wound Cu foil surfaces.

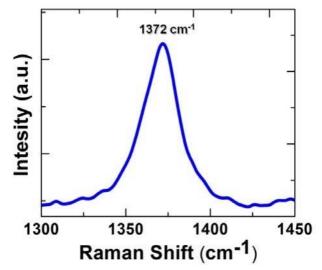


Fig. S3. Raman spectrum of monolayer h-BN transferred on SiO₂ substrate.

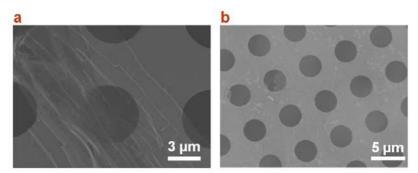


Fig. S4. SEM images of transferred h-BN monolayer on TEM grid covered with patterned carbon support film.

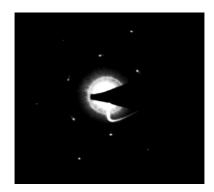
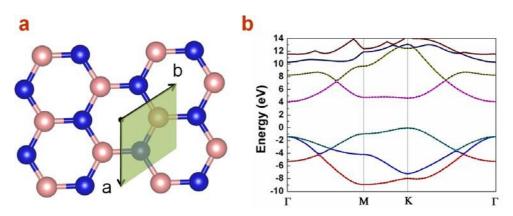



Fig. S5. SAED pattern of h-BN monolayer, showing the hexagonal structure and monolayer feature.

Fig. S6. (a) Atomic structure of undoped monolayer h-BN for first-principles calculations and (b) calculated band structure.

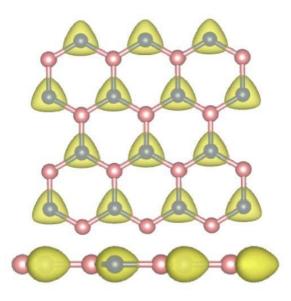


Fig. S7. Topview (up) and sideview (down) of charge distribution (VBM) superimposed on h-BN lattice.

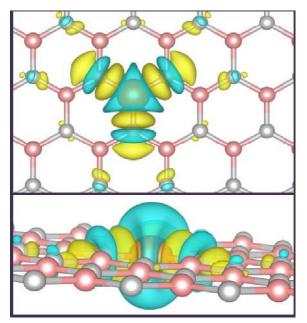
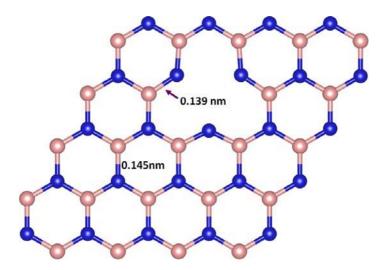
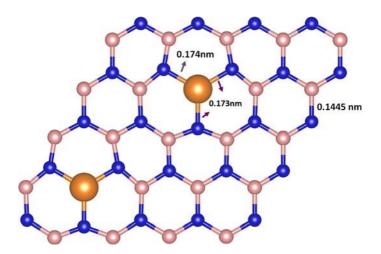




Fig. S8. Topview (up) and sideview (down) of differential charge density distribution (VBM) of Mg doped monolayer h-BN by undoped h-BN.

Fig. S9. Relaxed atomic structure of h-BN layer with a B vacancy. The bond length of B-N in the vacancy core shrinks to 0.139 nm, less than the original length 0.145 nm.

Fig. S10. Relaxed atomic structure of h-BN:Mg₂ monolayer (B_{Mg2}). The bond length of Mg-N is measured to be 0.174 nm, longer than that of B-N (0.145 nm).

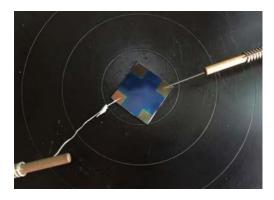


Fig. S11. Photograph of electrical measurement for h-BN:Mg sample on probe station.

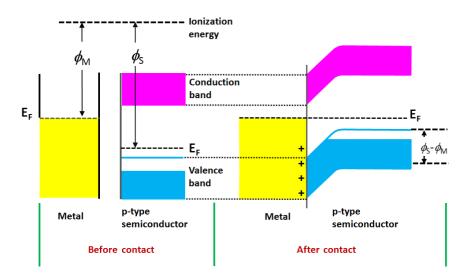


Fig. S12. Energy bands configurations of metal and p-type semiconductor before (left) and after (right) contact.

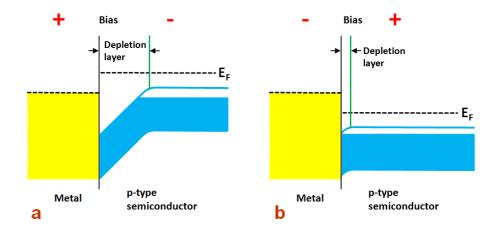
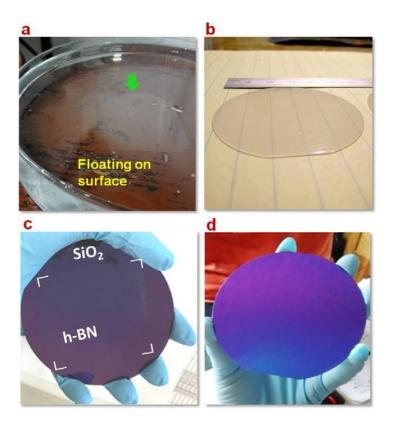



Fig. S13. Energy bands configurations of contact of metal and p-type semiconductor with two polarities: (a) V_+ bias and (b) V_- bias.

Fig. S14. Image of galvanometer when measuring the net current of h-BN:Mg monolayer with single probe rectification method. The negative net current confirms the p-type conductivity of h-BN:Mg.

Fig. S15. Photographs of large-area h-BN transfer. (a) PMMA protected h-BN film floating on DI water surface, (b) h-BN covered 2" GaN wafer, (c) 4" Si wafer partially covered with h-BN film, and (d) h-BN fully covered 4" Si wafer.

Fig. S16. Photograph of a set of home-made spade tools for h-BN film transfer.