Electronic Supplementary Information

A versatile platform for the high-efficient preparation of graphene quantum dots: photoluminescence emission and hydrophilicity-hydrophobicity regulation and organelle imaging

Xiaolong Wu,^{‡a} Liling Ma,^{‡a} Shan Sun,^a Kai Jiang,^a Ling Zhang,^a Yuhui Wang,^{*a} Haibo Zeng,^b and Hengwei Lin^{*a}

^a Key Laboratory of Additive Manufacturing Materials of Zhejiang Province & Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, P. R. China

^b Key Laboratory of Advanced Display Materials and Devices (Ministry of Industry and Information Technology), Nanjing University of Science and Technology, Nanjing, 210094, P. R. China

[‡] These authors contributed equally.

* E-mail: E-mail: wangyuhui@nimte.ac.cn (Y.W.) or linhengwei@nimte.ac.cn (H. L.)

Fig. S1 a-c) PL quantum yields of the y-GQDs and g-GQDs were determined by referenced rhodamine 6G at excitation wavelength of 480 nm; d-f) PL quantum yields of the b-GQDs and NGO were determined by referenced 9,10-bis(phenylethynyl) anthracene at excitation wavelength of 420 nm.

Fig. S2 XPS spectra of the NGO, b-GQDs, g-GQDs, and y-GQDs.

Fig. S3 High-Resolution N1s XPS spectra of b-GQDs (a), g-GQDs (b) and y-GQDs (c).

Fig. S4 PL decay profiles of y-GQDs (a), g-GQDs (b), and b-GQDs (c), respectively.

Table S1. PL lifetimes of the b-, g- and y-GQDs and relative contents of the two components by fitting the corresponding time-resolved spectra.

Sample	$\lambda_{\rm Em}$ (nm)	τ_1 (ns)	R ₁ (%)	τ2 (ns)	R ₂ (%)	$\tau_{average}$ (ns)
y-GQDs	554	2.2	37.4	8.0	62.6	4.0
g-GQDs	520	2.1	46.1	7.0	53.9	3.4
b-GQDs	495	2.3	39.0	7.2	61.0	3.9

Fig. S5 Cellular cytotoxicity measurement of the NGO, y-GQDs, g-GQDs, and b-GQDs against MCF-7 by the MTT assay.

Fig. S6 Cell imaging property of the y-GQDs (a), g-GQDs (b), and b-GQDs (c) against MCF-7 under fluorescent field (middle), bright filed (right), and their merged images (left).

Fig. S7 FT-IR spectrum (a), TEM image (b), and PL emission (c) of the Hex-GQDs (in toluene) with different excitation wavelengths.

Fig. S8 FT-IR spectra of the NGO (black line), TPP-GQDs (blue line) and Mor-GQDs (red line) (a); TEM images of TPP-GQDs (b) and Mor-GQDs (c); Fluorescence emission spectra of the TPP-GQDs (d) and Mor-GQDs (e) under different excitation wavelengths.

Fig. S9 Cellular cytotoxicity measurement of TPP-GQDs (**a**) and Mor-GQDs (**b**) (both from 20 to $100 \ \mu\text{g/mL}$) through the standard MTT assay toward MCF-7 cells.

Fig. S10 Co-localization of Mor-GQDs and Lyso-tracker in MCF-7 cells. The fluorescence images were collected at 520–650 nm (a, for Mor-GQDs) and 430–500 nm (b, for Lyso-tracker), respectively, with excitation at 488 nm. (c) Merged images. (d) Bright filed image. (e) Fluorescence intensity profile of linear region of interest across a selected single cell. Scale bar: $20 \ \mu m$.