Supporting Information

for

Doping Controlled Pyro-phototronic Effect in Self-powered Zinc Oxide Photodetector for Enhancement of Photoresponse

Buddha Deka Boruah, Shanmukh Naidu Majji, Sukanta Nandi and Abha Misra¹

Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, Karnataka,

India 560012

¹ Corresponding Author: Abha Misra, Email: abha.misra1@gmail.com

Fig. S1 Energy band diagram of the self-powered Cl:ZnO NRs PD under UV light radiation.

Fig. S2 Cyclic response current analysis of the Cl:ZnO NRs PD in absence of external bias voltage under UV illumination intensity of 3 mW/cm².

Fig. S3 Saturation photoresponse analysis of pristine ZnO NRs, F:ZnO NRs, Cl:ZnO NRs, Br:ZnO NRs and I:ZnO NRs based self-powered PDs in absence of external bias voltage under the UV light intensity of 3 mW/cm².

Fig. S4 Comparison response currents (photocurrent and pyrocurrent) plots of ZnO NRs, F:ZnO NRs, Cl:ZnO NRs, Br:ZnO NRs and I:ZnO NRs self-powered PDs under UV radiation intensity of 3 mW/cm².

Table S1: Photocurrent, pyrocurrent and response current of PDs at different sheet charge density in a fixed UV illumination intensity of 3 mW/cm².

PD	Sheet charge	Photocurrent (I _{ph} , nA)	Pyrocurrent (I _{py} , nA)	Response
	density (cm ⁻²)			current (ΔI, nA)
ZnO NRs	0.323 x 10 ¹⁰	40	90	130
F:Zno NRs	4.62 x 10 ¹⁰	150	218	368
Cl:ZnO NRs	7 x 10 ¹⁰	220	344	564
Br:ZnO NRs	3.8 x 10 ¹⁰	140	171	311
I:ZnO NRs	$0.92 \ge 10^{10}$	90	150	240

Parameters	Photoinduced response	Pyro-phototronic effect induced response	Net response
Responsivity (mA/W)	0.531	1.805	2.3354
EQE (%)	0.180	0.614	0.794
Specific detectivity (Jones)	3.503 x 10 ⁹	11.911 x 10 ⁹	15.414 x 10 ⁹
LDR (dB)	27.764	31.646	35.941

 Table S2: Photoresponse parameters of the Cl:ZnO NRs self-powered PD.

Table S3. Comparison of photoresponse parameters of the as-fabricated self-powered PD with

 previously reported high performance self-powered UV PDs.

PDs	λ (nm)	P (mW/cm ²)	<i>t_r</i> (s)	t_d (s)	I (nA)
ZnO Micro/NW/PEDOT:PSS ^{S1}	325	-	<1	<1	1.2
p-NiO/ZnO-NRs ^{S2}	355	3.2	0.23	0.21	300
rGO-ZnO nanostructure ^{S3}	334	-	<0.2	<0.2	20
TiO ₂ NRs ⁸⁴	365	1.55	0.2	0.3	75 x 10 ³
Ag-ZnO NWs ⁸⁵	365	0.06	0.14	0.52	71 x 10 ³
TiO ₂ NRs ^{S6}	365	1.25	0.15	0.05	5 x 10 ³
Cl:ZnO NRs (present work)	365	3	0.028	0.023	0.565 x 10 ³

Fig. S5 (a) SEM images of ZnO NRs at low and high magnifications. (b) Cross-sectional image of ZnO NRs. SEM images of (c) F:ZnO NRs, (d) Br:ZnO NRs and (e) I:ZnO NRs, respectively. Inset depicts the cross-sectional views of the respective samples.

Fig. S6 EDS spectra of (a) pristine ZnO NRs, (b) F:ZnO NRs, (c) Cl:ZnO NRs, (d) Br:ZnO NRs and (e) I:ZnO NRs.

Fig. S7 Elemental mapping: (a) Zn K mapping, (b) O K mapping and (c) Cl K mapping of Cl:ZnO NRs.

Fig. S8 (a) XRD patterns of pristine ZnO, F:ZnO, Cl:ZnO, Br:ZnO and I:ZnO NRs with the diffraction plane of (002). (b) Room temperature PL spectra of pristine ZnO, F:ZnO, Cl:ZnO, Br:ZnO and I:ZnO NRs. (c) and (d) are the fitted PL spectra of ZnO NRs and Cl:ZnO NRs samples.

References

- S1. P. Lin, X. Yan, Z. Zhang, Y. Shen, Y. Zhao, Z. Bai and Y. Zhang, ACS Appl. Mater. Interfaces, 2013, 5, 3671.
- S2. Y. Shen, X. Yan, Z. Bai, X. Zheng, Y. Sun, Y. Liu, P. Lin, X. Chen and Y. Zhang, *RSC Adv.*, 2015, 5, 5976.
- S3. Z. Zhan, L. Zheng, Y. Pan, G. Sun and L. Li, J. Mater. Chem., 2012, 22, 2589.
- S4. Z. Wang, S. Ran, B. Liu, D. Chen and G. Shen, Nanoscale, 2012, 4, 3350.
- S5. Y. Zeng, X. Pan, W. Dai, Y. Chen and Z. Ye, RSC Adv., 2015, 5, 66738.
- S6. Y. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei and J. Jiao, Nanoscale Res. Lett., 2013, 8, 188.