Supporting Information

Co₂P Quantum Dot Embedded N, P Dual-doped Carbon Selfsupported Electrodes with flexible and binder-free properties for Efficient Hydrogen Evolution Reaction

Chengtian Zhang^a, Zonghua Pu^a, Ibrahim Saana Amiinu^a, Yufeng Zhao^b, Jiawei Zhu^a Yongfu Tang^b and Shichun Mu^{a,*}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China ^bKey Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China

E-mail: <u>msc@whut.edu.cn</u>

Experimental section

Materials

Aniline, H_2SO_4 and ethanol were purchased from Aladdin Reagents Ltd. (China). HCl and HNO₃ were purchased from Beijing Chemical Works Ltd. $Co(NO_3)_2 \cdot 6H_2O$ was purchased from Xinglong Chemical Corp. Ltd. Phytic acid (PA), Pt/C (20 wt. %) and Nafion (5 wt. %) were purchased from Sigma-Aldrich. All the reagents were analytical grade and used without further treatments. The deionized water used throughout the whole experimental process was purified through a Millipore system.

Preparation of carbon cloth (CC): CC was cleaned with mixed aqueous solutions of HCl (19 wt. %) and HNO₃ (10 wt. %), followed by washing with deionized water repeatedly.

Preparation of Co₂P@NPC:The preparation of Co₂P@NPC was obtained by a simple electrodeposition in a three-electrode system consisting of carbon cloth (CC) as working electrode, Ag/AgCl as reference electrode and carbon rod as count electrode at room temperature. The PANI-PA was electropolymerized onto the CC in the electrolyte. The solution was formed by dissolving 8 mL HCl in 50 mL H₂O and then adding 4.6 g aniline and 10 g phytic acid under stirring for 30 minutes. A potential of 0.8 V was constantly applied to the working electrode for 30 min. And then, PANI-PA/CC was washed with deionized water, followed by drying at 60 °C for half an hour and then immersed in Co(NO₃)₂•6H₂O solution at 40 °C for 2 h, followed by drying at 80 °C for 4 h. A temperature programmed reduction process was then carried out at 700, 800, 900 °C in H₂ for 2h. The heating rate is 5 °C per min. After cooling down to room temperature, the samples were entirely transformed into N, P co-doped carbon structure. The NPC was prepared in a similar way without the soaking step.

Structural characterizations

Powder X-ray diffraction (XRD) patterns were collected on a Rigaku X-ray diffractometer equipped with a Cu K α radiation source. The morphology and structure were characterized by scanning electron microscopy (SEM: XL30 ESEM FEG) and transmission electron microscopy (TEM: JEM-2100F). X-ray photoelectron spectroscopy (XPS) was performed on an ESCALABMK II X-ray photoelectron spectrometer. Raman shifts were recorded on a LabRAM Aramis Raman spectrometer instrument using an Ar ion laser with an excitation wavelength of 633 nm.

Electrochemical measurements

All electrochemical measurements are performed on a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) in a standard three-electrode with a two-compartment cell. The acidic (0.5 M H_2SO_4) and electrochemical measurements were performed using a saturated calomel electrode (SCE) as the reference electrode. The graphite rod was used as the counter electrode in all measurements. Polarization data were obtained at a scan rate of 2 mV s⁻¹. In all measurements, the reference electrode was calibrated with respect to the reversible hydrogen electrode (RHE). All polarization curves were iR-corrected. Electrochemical impedance spectroscopy (EIS) measurements were carried out in the frequency range of 100 kHz–0.01 Hz.

Figure S1. EDX element mapping images of (a) Co₂P@NPC-800 coated on CC, (b) C, (c) N, (d) P, (e) Co and (f) O.

Figure S2. (a, b) SEM images of Co₂P@NPC-700.

Figure S3. (a, b) SEM images of Co₂P@NPC-900.

Figure S4. (a, b) SEM images of NPC.

Figure S5. XRD pattern of NPC, Co₂P@NPC-700, Co₂P@NPC-800 and Co₂P@NPC-900.

Figure S6. Raman spectrum of NPC ($I_D/I_G=0.9771$), Co₂P@NPC-700 ($I_D/I_G=0.9620$), Co₂P@NPC-800 ($I_D/I_G=0.9914$) and Co₂P@NPC-900 ($I_D/I_G=0.9764$).

Figure S7. FTIR spectrum of Co₂P@NPC and the pure CC.

Figure S8. Effect of metal contents on the electrocatalytic activity of $Co_2P@NPC$. Polarization curves (without iR-correction) for HER were carried out in 0.5 M H₂SO₄ for Co₂P@NPC-800 with different Co contents.

Figure S9. Nyquist plot of Co₂P@NPC and NPC.

Figure S10. Photograph of (a) the precursor coated on CC after electrolytic deposition and (b) the $Co_2P@NPC/CC$.

Table S1. Comparison of HER performance of $Co_2P@NPC$ with other recently reported catalysts in 0.5 M H_2SO_4 .

Catalyst	Current density (j, mA cm ⁻²)	Overpotential at the corresponding <i>j</i> (mV)	Ref.
Co ₂ P@NPC	10	116	This work
CoP/CNT	10	122	[1]
CoP hollow NPs	20	80	[2]
CoP nanotubes	10	129	[3]
Co ₂ P/Ti	10	100	[4]
Co ₂ P@N,P-	10	126	[5]
PCN/CNTs			
Co ₂ P@NPG	10	103	[6]
CoP/CNT	10	122	[7]
Ni ₂ P	10	137	[8]
FeP NPs@NC	10	130	[9]
CoP/rGO	10	105	[10]
CoP Hollow	10	159	[11]
Polyhedron			
CoP/carbon nanotubes	10	139	[12]
Mo ₂ C/CC	20	193	[13]
Porous Ni ₂ P	10	158	[14]
Polyhedrons			
Co_2P/C	10	125	[15]

Table S2. Comparison of HER performance of Co ₂ P@NPC with other recently reported catalysts in
1 M KOH.

Catalyst	Current density (<i>j</i> , mA cm ⁻²)	Overpotential at the corresponding <i>j</i> (mV)	Ref.
Co ₂ P@NPC	10	129	This work
CoP/CC	10	209	[16]
CoP@NC	10	210	[17]
FeP NPs/CC	10	218	[18]
Co-NRCNTs	10	370	[19]
Co ₂ P@NPG	10	165	[6]
CoP ₂ /RGO	10	88	[20]
Co ₂ P nanorods	20	171	[21]
FeP NTs/CC	10	120	[22]
Co-P film	10	94	[23]
CoP ₃	10	119	[24]
NiCoP quasi-hollow nanocubes	10	150	[25]
NiCoP Hollow QuasiPolyhedra	10	124	[26]
CuCoP/nitrogendoped carbon	10	220	[27]
Ni-Co mixed	10	116	[28]
phosphide/nitrogendoped carbon			
FeP2/Fe foil	10	189	[29]
Co@NG	10	337	[30]

 Table S3. Elemental content analysis result of Co₂P@NPC

Element	Mass Conc (wt. %)	
Р	2.63	
Со	6.10	
С	83.28	
Ν	3.16	

Reference:

- 1. Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri and X. Sun, *Angew. Chem. Inter. Ed.*, 2014, **53**, 6828–6832.
- 2. E. Popczun, C. Read, C. Roske, N. Lewis and R. Schaak, Angew. Chem. Int. Ed., 2014, 53, 5531–5534.
- H. Du, Q. Liu, N. Cheng, A. M. Asiri, X. Sun and C. Li, J. Mater. Chem. A, 2014, 2, 14812– 14816.
- 4. J. F. Callejas, C. G. Read, E. J. Popczun, J. M. McEnaney and R. E. Schaak, *Chem. Mater.*, 2015, **27**, 3769-3774.
- 5. X. Z. Li, Y. Y. Fang, F. Li, M. Tian, X. F. Long, J. Jin and J. T. Ma, *J. Mater. Chem. A*, 2016, 4, 15501-15510.
- M. Zhuang, X. Qu, Y. Dou, L. Zhang, Q. Zhang, R. Wu, Y. Ding, M. Shao and Z. Luo, *Nano Lett.*, 2016, 16, 4691–4698.
- 7. Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri and X. Sun Angew. Chem. Int. Ed., 2014, 53, 6710-6714.
- 8. Y. Pan, Y. Liu, J. Zhao, K. Yang, J. Liang, D. Liu, W. Hu, D. Liu, Y. Liu and C Liu, *J. Mater. Chem. A*, 2015, **3**, 1656-1665.
- 9. Z. Pu, I. S. Amiinu, C. Zhang, M. Wang, Z. Kou and S Mu, Nanoscale, 2017, 9, 3555-3560.
- 10. L. Jiao, Y. Zhou and H. Jiang, Chem. Sci., 2016, 7, 1690-1695.
- 11. M. Liu and J. Li, ACS Appl. Mater. Inter, 2016, 8, 2158-2165.
- 12. C. Wu, Y. Yang, D. Dong, Y. Zhang and J. Li, Small, 2017, 13.
- M. F, H. Chen, Y. Wu, L. Feng, Y. Liu, G. Li and X. Zou, J. Mater. Chem. A, 2015, 3, 16320-16326.
- 14. L. Yan, P. Dai, Y. Wang, X. Gu, L. Li, L. Cao and Zhao, X, ACS Appl. Mater. Inter, 2017, 9, 11642-11650.
- 15. A. Dutta, A. K. Samantara, S. K. Dutta, B. K. Jena and N. Pradhan, *ACS Energy Lett*, 2016, 1, 169-174.
- 16. J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- 17. J. Wang, D. Gao, G. Wang, S. Miao, H. Wu, J. Li and X. Bao, J. Mater. Chem. A, 2014, 2, 20067–20074.
- 18. Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Catal., 2014, 4, 4065–4069.
- 19. X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova and T. Asefa, *Angew. Chem. Int. Ed.*, 2014, **126**, 4461–4465.
- 20. J. Wang, W. Yang and J. Liu, J. Mater. Chem. A, 2016, 4, 4686-4690.
- 21. J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu and W. Xing, ACS Catal., 2015, 5, 6874-6878.
- 22. Y. Yan, B. Xia, X. Ge, Z. Liu, A. Fisher and X. Wang, Chem. Eur. J., 2015, 21, 18062-18067.
- 23. N. Jiang, B. You, M. Sheng and Y. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251-6254.
- 24. T. Wu, M. Pi, D. Zhang and S. Chen, J. Mater. Chem. A, 2016, 4, 14539-14544.
- 25. Y. Feng, X.Y. Yu, and U. Paik, Chem. Commun, 2016, 52, 1633-1636.
- 26. Li, Y., Liu, J., Chen, C., Zhang, X. and Chen, J., ACS Appl. Mater. Inter, 2017, 9, 5982-5991.
- 27. J. Song, C. Zhu, B. Xu, S. Fu, M. H. Engelhard, R. Ye, D. Du, S. P. Beckman and Y. Lin, *Adv. Energy. Mater.*, 2017, 7.

- 28. L. Han, T. Yu, W. Lei, W. Liu, K. Feng, Y. Ding, G. Jiang, P. Xu and Z. Chen, *J. Mater. Chem. A*, 2017, **5**, 16568-16572.
- 29. Y. Yan, B. Xia, X. Ge, Z. Liu, A. Fisher and X. Wang, Chem. Eur. J., 2015, 21, 18062-18067
- 30. H. Fei, Y. Yang, Z. Peng, G. Ruan, Q. Zhong, L. Li, E. L. G. Samue and J. M. Tour, *ACS Appl. Mater. Inter*, 2015, **7**, 8083–8087.