Electronic Supplementary Information (ESI) for

Preferential Horizontal Growth of Tungsten Sulfide on Carbon and Insight into Active Sulfur Site for the Hydrogen Evolution Reaction

Bora Seo,^{a,‡} Gwan Yeong Jung,^{b,‡} Jae Hyung Kim,^b Tae Joo Shin,^c Hu Young Jeong,^c Sang Kyu Kwak, *^b and Sang Hoon Joo *^{a,b}

^{*a*}Department of Chemistry, and ^{*b*}School of Energy and Chemical Engineering, and ^{*c*}UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.

[‡]These authors contributed equally to this work.

*E-mail: shjoo@unist.ac.kr (S.H.J.); skkwak@unist.ac.kr (S.K.K.)

Table of Contents

Supplementary Tables and Figures	S3
Table S1. Contents (wt.%) of W, S, and C in WS _x @OMC determined by EDS.	S 3
Fig. S1 SEM images of SBA-15 and $WS_x@OMCs$.	S4
Fig. S2 Small-angle XRD patterns of SBA-15, S-OMC and WS _x @OMCs.	S 5
Fig. S3 N ₂ adsorption–desorption analysis of SBA-15 and WS _x @OMCs.	S6
Table S2 Textural parameters obtained from N ₂ adsorption–desorption analyses.	S7
Table S3 Basal plane crystallite sizes of WS_2 nanoplates determined by the TEM images.	S8
Fig. S4 W 4f XPS spectra for bulk-WS ₂ and WS _x @OMCs.	S9
Fig. S5 SEM, small-angle XRD, N_2 adsorption–desorption analysis for 2% $WS_x@OMCs$.	S10
Fig. S6 W L ₃ -edge XANES spectra of 2% WS _x @OMCs and reference materials.	S11
Table S4 Structural parameters derived from fitted EXAFS for Bulk-WS ₂ and 2% WS _x @OMCs.	S12
Fig. S7 TEM characterization of $MoS_2@OMCs$.	S13
Fig. S8 Energy diagram for unit potential energy.	S14
Table S5 Unit potential energies and stacking energies of MS_2 cluster models (M = W, Mo).	S15
Fig. S9 Raw data for LSV curves of S-OMC and $WS_x@OMCs$.	S16
Table S6 HER activity parameters of $WS_x@OMCs$.	S17
Table S7 HER activity comparison of WS_x -based electrocatalysts.	S18
Fig. S10 Tafel plots for 2% WS _x @OMCs.	S19

2. References for ESI

S20

1. Supplementary Tables S1–S7 and Figs. S1–S10

Sample	Nominal loading ^b	W	S ^c	С
2% WS _x @OMC	2	1.1 ± 0.3	6.0 ± 1.4	92.9 ± 1.2
5% WS _x @OMC	5	2.7 ± 1.0	6.9 ± 0.9	90.4 ± 1.6
10% WS _x @OMC	10	6.2 ± 0.7	5.7 ± 0.7	88.1 ± 1.0
15% WS _x @OMC	15	8.1 ± 0.9	6.1 ± 1.2	85.8 ± 2.0
20% WS _x @OMC	20	12.0 ± 2.5	5.5 ± 0.7	82.5 ± 2.7

Table S1 Contents (wt.%) of W, S, and C in $WS_x@OMC$, determined by quantitative EDS analysis.^{*a*}

^{*a*} The contents were determined by averaging seven quantitative EDS results measured on different sites.

^b The nominal loading was determined by the quantity of PTA precursor used in the synthesis.

^{*c*} S species can exist as WS_x and S–C.

Fig. S1 SEM images of (a) SBA-15, (b) 2% WS_x@OMC, (c) 5% WS_x@OMC, (d) 10% WS_x@OMC, (e) 15% WS_x@OMC, and (f) 20% WS_x@OMC.

Fig. S2 Small-angle XRD patterns of SBA-15, S-OMC, and WS_x@OMCs.

Fig. S3 (a) Nitrogen adsorption-desorption isotherms of SBA-15, S-OMC, and WS_x@OMCs. Filled circles and empty circles represent adsorption and desorption branches of the isotherms, respectively. The isotherms of S-OMC, 2 wt.%, 5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.% WS_x@OMC were offset by 100, 600, 1000, 1500, 2000, and 2500 cm³ g⁻¹, respectively, for clarity. (b) The BJH pore size distributions of SBA-15, S-OMC, and WS_x@OMCs obtained from the adsorption branches of their isotherms.

Sample	BET surface area ^a (m ² g ⁻¹)	Pore volume ^b (cm ³ g ⁻¹)	Pore size ^c (nm)
SBA-15	337	0.90	12.2
OMC@SBA-15	464	0.52	7.2–10.7
S-OMC	1112	2.18	7.2, 24.4
2% WS _x @OMC	1265	2.32	7.2, 28.1
2% WS _x @OMC_20 h	1243	2.28	7.2, 32.3
5% WS _x @OMC	1259	2.37	7.2, 24.4
10% WS _x @OMC	1172	2.28	7.2, 24.4
15% WS _x @OMC	1217	2.18	7.2, 32.3
20% WS _x @OMC	1210	2.21	7.2, 32.3

Table S2 BET surface areas, total pore volumes, and pore sizes obtained from nitrogen adsorption-desorption analysis.

^{*a*} BET surface area was obtained in the relative pressure range of 0.05–0.2.

^b Pore volume was determined at the relative pressure of 0.98–0.99.

^c Pore size was determined by using the BJH method from the adsorption branch of the isotherms.

Sample	Basal plane size ^a (nm)
2% WS _x @OMC	_ <i>b</i>
2% WS _x @OMC_20 h	7.1 ± 4.5
5% WS _x @OMC	4.4 ± 2.1
10% WS _x @OMC	4.7 ± 2.5
15% WS _x @OMC	4.1 ± 2.0
20% WS _x @OMC	4.6 ± 2.6

Table S3 Basal plane crystallite sizes of WS₂ nanoplates determined by the TEM images.

^{*a*} Basal plane sizes were measured on the particles in TEM images. The values were obtained by averaging the measured sizes of at least one hundred of particles.

^{*b*} In this sample, most of WS_x exist in the form of subnanometer-sized clusters.

Fig. S4 W 4f XPS spectra for bulk-WS₂ and WS_x@OMCs.

Fig. S5 (a) SEM image of 2% WS_x@OMC prepared with a sulfidation time of 20 h. (b) Smallangle XRD patterns for SBA-15 and 2% WS_x@OMCs prepared with different sulfidation time of 5 h and 20 h. (c) Nitrogen adsorption-desorption isotherms for 2% WS_x@OMCs prepared with different sulfidation time. Filled circles and empty circles represent adsorption and desorption branches of the isotherms, respectively. The isotherms of the 20 h sample was offset by 500 cm³ g⁻¹, for clarity. (d) The BJH pore size distributions obtained from the adsorption branches of the isotherms.

Fig. S6 W L₃-edge XANES spectra of 2% WS_x@OMCs prepared with different sulfidation times of 5 h and 20 h, displayed with reference samples.

Sample	Shell	CN	R (Å)	ΔE_0	σ ² (×10 ⁻³ Å ⁻²)	R factor (%)
	$W-S_1$	6	2.394 (8)	6.0	1.9 (9)	
Bulk-WS ₂	W-W	6	3.161 (16)	6.4	2.4 (9)	0.96
	W-S ₂	6	3.949 (25)	6.0	4.4 (30)	
	$W-S_1$	4.8 ± 0.5	2.399 (5)	7.1	1.9 <i>a</i>	
2%_20 h	W-W ^b	3.8 ± 0.6	3.151 (12)	5.3	2.4	1.31
	W-S ₂	3.8 ± 0.6	3.952 (22)	7.1	4.4	
	$W-S_1$	3.8 ± 0.4	2.408 (8)	8.7	1.9	
2%_5 h	W-W	2.6 ± 0.6	3.129 (23)	2.6	2.4	3.13
	W-S ₂	2.6 ± 0.6	3.996 (44)	8.7	4.4	

Table S4 Structural parameters derived from fitted EXAFS spectra for bulk-WS₂ and 2% $WS_x@OMC$ samples prepared with different sulfidation times of 5 h and 20 h.

 a Debye-Waller parameter ($\sigma^2)$ was fixed to the same value in the same type of bond.

 b Bonds of W–W and W–S $_{2}$ were set to have the same CN.

Fig. S7 TEM images of (a) 1L-MoS₂@OMC, (b) 2L-MoS₂@OMC, (c) 3L-MoS₂@OMC, (d) 4L-MoS₂@OMC, and (e) Meso-MoS₂. Corresponding AR-TEM images (f–j) and histograms for layer number distribution (k–o). The average number of MoS₂ layers is denoted as 'N' in (k– o). The figure is modified from our previous work.^{S1}

Fig. S8 Top view of $(MS_2)_n$ cluster models (n = 3, 12, 27, and bulk state, M = W, Mo) and the energy diagram for the unit potential energy ($\mu_{MS_2}^n$). The M and S atoms are represented by red and yellow spheres, respectively. In the 'on-top' (2L) model, the M and S atoms in the bottom layer are presented as light red and light yellow spheres, respectively.

		$(MS_2)_3$	$(MS_2)_{12}$	(MS ₂) ₂₇	(MS ₂) _{bulk}
	Free-standing (1L) ^a	-5.56	-7.17	-7.94	-9.62
WS_2	On-top (2L) ^b	-5.89	-7.48	-8.21	-9.92
-	Stacking energy ($\Delta E_{stacking}$)	-0.33	-0.31	-0.27	-0.30
	Free-standing (1L) ^a	-4.37	-5.96	-6.70	-8.26
MoS_2	On-top (2L) ^b	-4.73	-6.32	-7.07	-8.59
	Stacking energy ($\Delta E_{stacking}$)	-0.36	-0.36	-0.37	-0.33

Table S5 Unit potential energies (eV, $\mu_{MS_2}^n$) and stacking energies ($\Delta E_{stacking}$) of MS₂ cluster models (M = W, Mo).

^{*a*} Free-standing (1L) denotes the $\mu_{MS_2}^n$ of free-standing single layer MS₂ cluster model.

 b On-top (2L) denotes the $\mu^{n}_{MS_{2}}$ of on-top double layer MS₂ cluster model.

Fig. S9 Raw data for LSV curves of (a) S-OMC, (b) 2% WS_x@OMC, (c) 5% WS_x@OMC, (d) 10% WS_x@OMC, (e) 15% WS_x@OMC, (f) 20% WS_x@OMC, and (g) 2% WS_x@OMC_20 h.

Sample	Overpotential at 10 mA cm ⁻² (V)	Tafel slope ^a (mV dec ⁻¹)	Exchange current density ^b (A cm ⁻²)
2% WS _x @OMC	325	129	4.14×10^{-5}
2% WS _x @OMC_20 h	354	117	1.55×10^{-5}
5% WS _x @OMC	279	95	1.50×10^{-5}
10% WS _x @OMC	247	72	5.02×10^{-6}
15% WS _x @OMC	226	68	5.30×10^{-6}
20% WS _x @OMC	213	74	1.34×10^{-5}

Table S6 HER activities of $WS_x@OMC$ nanostructures in terms of overpotential at $-10 \text{ mA} \text{ cm}^{-2}$, Tafel slope, and exchange current density.

^{*a,b*} The Tafel slopes and exchange current densities were derived from the linear portion of the corresponding Tafel plots.

Catalysts	Loading (µg cm ⁻²)	Overpotential at 10 mA cm ⁻² (V)	Tafel slope (mV dec ⁻¹)	Ref.
2% WS _x @OMC	230	0.325	129	
20% WS _x @OMC	(~4.6 μg for WS _x) 230 (~46 μg for WS _x)	0.213	74	This work
1 T-WS ₂	-	0.365	85	S2
CoWS _x	-	0.373	78	S3
WS ₂ -rGO	400	0.260	58	S4
WS ₂ nanoflakes	1000	0.350	200	S5
WS ₂ /CC	14 for WS_2	0.214	68	S6
Metallic WS ₂ nanosheets	1000	0.140	70	S7
WS ₂ nanoribbons	-	0.240	68	S 8
WS ₂ nanoflakes	350	0.158	48	S9
G-WS ₂	100	0.306	67	S10
1T-WS ₂ nanosheets	6.5	0.230	55	S11
WS_2 quantum dots	-	0.330	70	S12
3D WS ₂ @P,N,O-graphene	113	0.125	52.7	S13
WS ₂ -rGO	562	0.170	52	S14
WS ₂ nanosheets	-	0.278	120	S15
WS ₂ nanorattle	350	0.192	68	S16
WS ₂ /WS ₃ film	-	0.494	43.7	S17

Table S7 Comparison of loadings, overpotentials, and Tafel slopes of WS_x -based electrocatalysts for HER.

Fig. S10 Tafel plots for 2% WS_x@OMCs prepared with different sulfidation times of 5 h and 20 h. Considering the error ranges, the Tafel slopes are similar to each other.

2. References for ESI

- S1 B. Seo, G. Y. Jung, Y. J. Sa, H. Y. Jeong, J. Y. Cheon, J. H. Lee, H. Y. Kim, J. C. Kim, H. S. Shin, S. K. Kwak and S. H. Joo, *ACS Nano*, 2015, 9, 3728–3739.
- S2 D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda and M. Chhowalla, *Nat. Mater.*, 2013, **12**, 850–855.
- S3 P. D. Tran, S. Y. Chiam, P. P. Boix, Y. Ren, S. S. Pramana, J. Fize, V. Artero and F. Barber, *Energy Environ. Sci.*, 2013, **6**, 2452–2459.
- S4 J. Yang, D. Yoiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla and H. S. Shin, *Angew. Chem. Int. Ed.*, 2013, **52**, 13751–13754.
- S5 C. L. Choi, J. Feng, Y. Li, J. Wu, A. Zak, R. Tenne and H. Dai, *Nano Res.*, 2013, **6**, 921–928.
- S6 T.-Y. Chen, Y.-H. Chang, C.-L. Hsu, K.-H. Wei, C.-Y. Chiang and L.-J. Li, *Int. J. Hydrogen Energy*, 2013, **38**, 12302–12309.
- S7 M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers and S. Jin, *Energy Environ. Sci.*, 2014, 7, 2608–2613.
- S8 J. Lin, Z. Peng, G. Wang, D. Zakhidov, E. Larios, M. J. Yacaman and J. M. Tour, *Adv. Energy Mater.*, 2014, **4**, 1301875.
- S9 L. Cheng, W. Huang, Q. Gong, C. Liu, Z. Liu, Y. Li and H. Dai, *Angew. Chem. Int. Ed.*, 2014, **53**, 7860–7863.
- S10 Z. Pu, Q. Liu, A. M. Asiri, A. Y. Obaid and X. Sun, *Electrochim. Acta*, 2014, **134**, 8–12.
- S11 A. Ambrosi, Z. Sofer and M. Pumera, *Chem. Commun.*, 2015, **51**, 8450–8453.
- S12 S. Xu, D. Li and P. Wu, Adv. Funct. Mater., 2015, 25, 1127–1136.
- S13 J. Duan, S. Chen, B. A. Chambers, G. G. Andersson and S. Z. Qiao, *Adv. Mater.*, 2015, 27, 4234–4241.
- S14 J. Zhang, Q. Wang, L. Wang, X. Li and W. Huang, *Nanoscale*, 2015, 7, 10391–10397.
- S15 T. P. Nguyen, S. Choi, J.-M. Jeon, K. C. Kwon, H. W. Jang and S. Y. Kim, *J. Phys. Chem. C*, 2016, **120**, 3929–3935.
- S16 Y. Wen, Y. Xia and S. Zhang, J. Power Sources, 2016, 307, 593–598.
- S17 S. M. Tan and M. Pumera, ACS Appl. Mater. Inter., 2016, 8, 3948–3957.