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1) Derivation of the relative fluorescence: the case of classical diffusion.

In the classical case, the system of differential equations that approximately 

describes the quenching process of dithionite with labels in polyelectrolyte film will be 

written in the following form:
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Where  is diffusion coefficient of quenchers in polyelectrolyte film,  is the binding D k

rate constant of quenchers with labels. In order to solve the system of equations (1) - (2), 

we need to set the initial and boundary conditions. Since at the initial moment of time 

there were no quenchers in the film and the concentration of labels has its maximal value

, then the initial conditions will be as follows: 0Lc

( ,0) 0Qc x  (3)

0( ,0)L Lc x c (4)
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At the interface with the bulk solution, the concentration of quenchers is constant 

and equals to , and the substrate is impermeable for quenchers. Therefore, boundary Eq
Qc

conditions can be written as follows:
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The equation (1) can be solved using variables separation method  and the change of the 

quenchers’ concentration with time will be as follows: 
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The solutions of equation (2) will be as follows:
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If  do not depend on time, then by substituting (6) in (7) we get the final expression for k

concentration of quenchers: 
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The kinetics of quenching of the label is determined by the following formula
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Substituting the expression for concentration of the quencher (7a) in (8) we obtain the 

following final expression for the kinetics of quenching:

%

%

1 2 2

3 3
00

2
2

(2 1)sin
( ) 16 (2 1)2exp 1 exp d
(0) (2 1) 4

4 ,

n

Eq
c Q

n
F nk
F n

D xk l R c t
l l

 
   



  





    
                      

  


(9)

where  is polyelectrolyte film thickness,  is effective reaction radius of labels.𝑙 𝑅𝑐

For the numerical calculation of  it is necessary to multiple the right part of the %k

expression with Avogadro’s number and divide to 1000, since during derivation of the 

formula, we considered collision of species in 1 cm3 volume.

For the analysis of experimental data, we rewrite (9) in the following form: 
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2) Derivation of the relative fluorescence: the case of atypical diffusion.

In the case of atypical equation the diffusion equation will be written in the following 

form:
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To solve the equation (1) the following change of variable  will be carried out: t
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With considering of (2), the equation (1) will be rewritten in the following form: 
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The change of variable (2) do not lead to a change of initial and boundary conditions and 

they stay the same as for system (3) – (4) as in a) . The solution of this case is similar to 

the classical case and it equals:
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Most often, the dependence of the diffusion coefficient on a time is given in the following 

form: 
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Let us note that in the formula (5) and (6) dimension of  does not coincide with 0D

common dimension cm2/s. By substituting (6) in (4) we get the following expression for 

the quenchers’ concentrations in the dimension form: 
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The change of concentration of labels will be described by the same formula as in classical 

case in a) - (2) and it’s solution will be given by the expression Appendix1 - (7). By 

substituting (16) in Appendix1 - (7), we get dependence of quenchers’ concentration on 

time:
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Then, substituting in a) - (8) the expression for quenchers’ concentration from (8) we get 

the following final expression for quenching kinetics:
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For the analysis of experimental data, we rewrite (9) in the following form: 

%

%  

1 2 2

3 3
01 10

1
2 2

1 0

(2 1)sin
(t) 16 (2 1)2exp 1 exp
(0) (2 1) 4

4 , / .

n

Eq
c Q

n
F t n tk d
F t n t

k l R c t l D

 




 



 





    
                                  

 


(10)

From (5) and (10) follows that in case of α = 1, as it was expected, the formula (10) 
identically transforms to analogue formula (10) for classical diffusion.


