Band Alignments and Heterostructures of Monolayer Transition Metal Trichalcogenides: MX₃ (M = Zr, Hf; X = S, Se) and Dichalcogenides: MX₂ (M = Tc, Re; S, Se) for Solar applications

Qiyi Zhao, Yaohui Guo, Yixuan Zhou, Zehan Yao, Zhaoyu Ren, Jintao Bai, Xinlong Xu*

*Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China

Corresponding author E-mail: <u>xlxuphy@nwu.edu.cn;</u>

Fax: +86-29-88303667;

Tel: +86-29-88303667;

1. Lattice constants of VIIB-VIA TMDs MX₂ (M = Tc, Re; X = S, Se) and IVB-VIA TMTs MX₃ (M = Zr, Hf; X = S, Se)

Table S1 Calculated and experimental equilibrium parameters of VIIB-VIA TMDs: Lattice constants (a (Å), b (Å), c (Å), α (deg), β (deg), γ (deg)) and atomic volume V_0 (Å³).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	225.48 214.65 201.35
vdW-D3 6.378 6.484 6.650 62.97 103.55 118.78 2 TcS ₂ vdW- 6.373 6.468 6.365 61.28 104.11 118.92 2	214.65 201.35
$TcS_2 \qquad vdW- \qquad 6.373 \qquad 6.468 \qquad 6.365 \qquad 61.28 \qquad 104.11 \qquad 118.92 \qquad 2$	201.35
TS/HI	
^a Expt. 6.371 6.464 6.654 62.94 103.61 119.00 2	213.39
vdW-DF 6.712 6.832 7.240 64.07 103.25 118.90 2	261.33
vdW-D3 6.64 6.76 7.00 63.70 103.47 118.76 2	246.64
TcSe ₂ vdW- 6.622 6.732 6.696 62.43 104.09 118.89 2	231.62
TS/HI	
Expt.	
vdW-DF 6.435 6.538 13.113 91.55 104.89 118.90 4	159.30
vdW-D3 6.381 6.486 12.801 91.70 105.13 118.83 4	140.46
ReS ₂ vdW- 6.364 6.464 12.818 91.64 105.12 118.67 4	138.30
TS/HI	
^a Expt. 6.352 6.446 12.779 91.51 105.17 118.97 4	134.49
vdW-DF 6.697 6.821 6.931 91.91 104.76 118.86 2	263.56
vdW-D3 6.610 6.742 6.680 91.87 105.01 118.70 2	247.83
ReSe ₂ vdW- 6.603 6.728 6.742 91.92 104.90 118.79 2	249.26
TS/HI	
^a Expt. 6.597 6.710 6.721 91.84 104.90 118.91 2	247.34

a Ref.¹

Table S2 Calculated and experimental equilibrium parameters of IVB-VIA TMTs:

	functional	a (Å)	b (Å)	c (Å)	β (deg)	Vo (Å ³)
ZrS ₃	vdW-DF	5.207	3.663	9.165	97.036	173.496
	vdW-D3	5.110	3.638	9.065	96.936	167.29
	vdW-TS/HI	5.123	3.628	9.287	96.595	171.167
	^a Exp.	5.124	3.624	8.980	97.280	165.437
ZrSe ₃	vdW-DF	5.521	3.792	9.675	97.494	200.809
	vdW-D3	5.383	3.760	9.534	97.244	191.438
	vdW-TS/HI	5.382	3.744	9.740	96.972	194.824
	^a Exp.	5.411	3.749	9.444	97.480	189.936
HfS ₃	vdW-DF	5.157	3.623	9.134	97.380	169.272
	vdW-D3	5.065	3.595	9.011	97.336	162.766
	vdW-TS/HI	5.072	3.589	9.235	96.561	166.894
	^a Exp.	5.092	3.595	8.967	97.380	162.806
HfSe ₃	vdW-DF	5.466	3.760	9.575	83.846	195.659
	vdW-D3	5.348	3.729	9.463	83.682	187.540
	vdW-TS/HI	5.355	3.716	9.654	84.829	191.334
	^a Exp.	5.388	3.722	9.428	97.780	187.310

Lattice constants (\boldsymbol{a} (Å), \boldsymbol{b} (Å), \boldsymbol{c} (Å), $\boldsymbol{\beta}$ (deg)) and atomic volume V_o (Å³).

a Ref.²

2. Crystal structures of VIIB-VIA TMDs MX₂ (M = Tc, Re; X = S, Se) and IVB-VIA TMTs MX₃ (M = Zr, Hf; X = S, Se)

Fig.S1 (a) Side view of MX_2 ; (b) Top view of MX_2 ; (c) The unit cell of MX_2 structure and the yellow represent chalcogen atoms and purple represent transition metal atoms.

Fig.S2 (a) Side view of MX_3 ; (b) Top view of MX_3 ; (c) The unit cell of MX_3 structure

and the viridity represent transition metal atoms and green represent chalcogen atoms.

3. Parameters for the calculation of heterostructures

The vacuum gaps of ZrS_3/HfS_3 and TcS_2/ReS_2 heterostructures are 2.55 Å and 1.79 Å, respectively. For atomic relaxation, we used Γ -centered $10 \times 12 \times 2$ and $9 \times 9 \times 2$ grids, respectively. The structural optimization was carried out until the residual forces fell below 0.01 eV/Å. The electronic convergence tolerance was set to 10^{-4} eV. Besides, an energy cutoff of 400 eV was chosen for the calculation.

REFERENCES:

- 1 H. J. Lamfers, A. Meetsma, G. A. Wiegers and J. L. de Boer, J. Alloys Compd., 1996, **241**, 34-39.
- 2 S. Furuseth, L. Brattas and A. Kjekshus, *Acta Chem. Scand.*, 1975, **29**, 623.