Supporting Information

Numerical insights into the early stages of nanoscale electrodeposition: nanocluster surface diffusion and aggregative growth[†]

Mesfin Haile Mamme,^{*a, b} Christoph Köhn,^{a,c} Johan Deconinck[,], Jon Ustarroz, ^{*a}

^aVrije Universiteit Brussel (VUB), Research Group Electrochemical and Surface Engineering (SURF), Pleinlaan 2, 1050 Brussels, Belgium.

^b Vrije Universiteit Brussel (VUB), Department of Electrical Engineering and Power Electronics, Pleinlaan 2, 1050 Brussels, Belgium.

^cDTU Space, National Space Institute, Technical University of Denmark, Elektrovej 328, 2800 Lyngby, Denmark.

*Corresponding authors: <u>mmamme@vub.be</u>, jon.ustarroz@vub.be

S1. Influence of the threshold size for defining a cluster on the early stages of cluster formation and aggregation

Figure S1 shows the evolution of the number and density of clusters as a function of time when all the clusters of $R \ge 1$ nm (a) or of $R \ge 2$ nm (b) are taken into account, for different values of F and α .

Figure S1. Evolution with time of the number of clusters and cluster density with $\alpha = 1$ for different values of F (top) and with F = 1 and different values of α (bottom). All clusters with of R \ge 1 nm are considered in (a) and (c) and all clusters with of R \ge 2 nm (b) and (d).

S2. Influence of the relative surface mobility on the cluster size distributions

Figure S2 shows the histograms of the size distributions of all the individual particles as a function of time, for F = 1 and $\alpha = 1$. Increasing the deposition time results in a larger dispersion of the particle sizes and in a decrease of the number of adatoms and small adatom aggregates.

Figure S2. Size distribution histogram for $\alpha = 1$ and F = 1 after 1ms (a), 3ms (b) and 10ms (c).