Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Performance enhancement of carbon nanotube thin film transistor

by yttrium oxide capping

Jiye Xia¹, Jie Zhao¹, Hu Meng², Qi Huang¹, Guodong Dong¹, Han Zhang¹, Fang Liu,

Defeng Mao², Xuelei Liang^{1,*}, Lianmao Peng^{1,*}

¹Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics,

Peking University, Beijing 100871, P.R. China;

²BOE Technology Group Co., Ltd., Beijing 100176, P. R. China

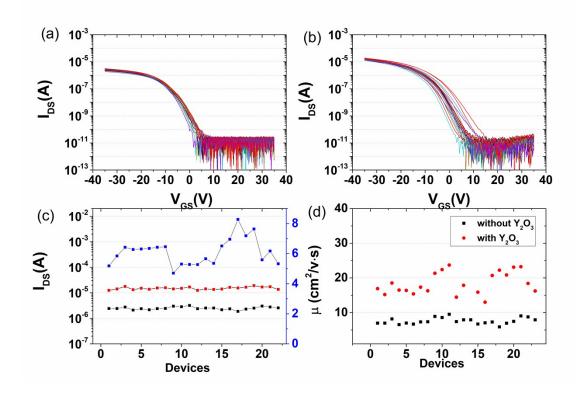


Fig. S1 Transfer characteristics of 22 CNT-TFTs before (a) and after (b) Y_2O_3 capping. These devices, (W, L) = (20µm, 10µm), were measured at $V_d = -1V$. (c) I_{on} of CNT-TFTs before (black), after (red) Y_2O_3 capping and their ratios, which were measured at Vg = -35V. (blue). (d) Extracted hole mobility correspondingly.

S2. Typical SEM image of deposited CNT thin film. The tube density is ~ 20 tube/µm.

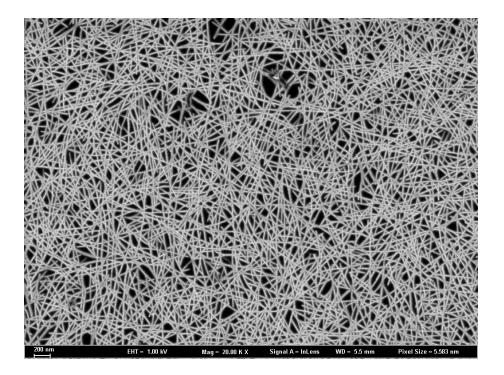


Fig. S2

S3. Ion of CNT-TFTs measured at the same gate voltage

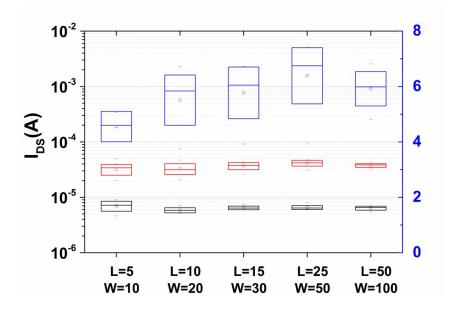
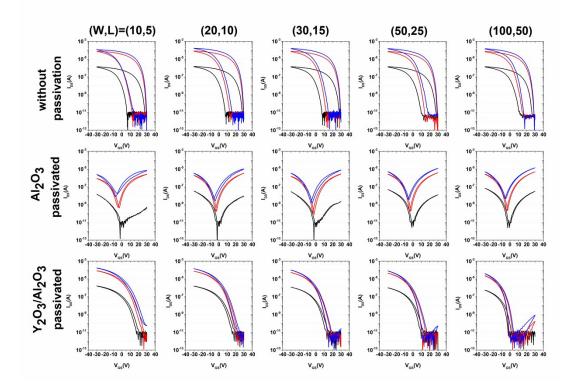
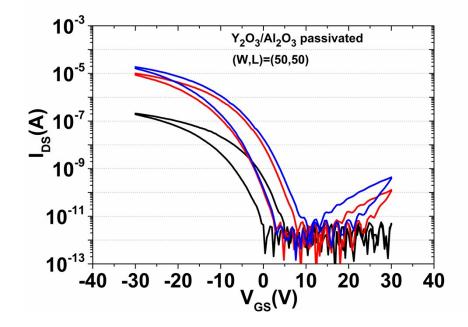




Fig. S3 I_{on} of CNT-TFTs measured at the same gate voltage ($V_g = -10V$), which are in correspondence with Fig. 2b in the main text. Black: before Y_2O_3 capping, red: after capping, blue: ratio of after to before.

S4 Typical results of Y_2O_3/Al_2O_3 passivated CNT-TFTs with various channel geometries.

S5 Typical results of Y₂O₃/Al₂O₃ passivated CNT-TFTs on glass substrates.

The device geometry is the same as those in Fig. 1 of the main text.