Supporting Information

Organic Field-Effect Transistors Integrated with $\mathrm{Ti}_{2} \mathrm{CT}_{\mathrm{x}}$ Electrodes

Shen Lai ${ }^{\text {a }}$, Sung Kyu Jang ${ }^{\text {a }}$, Jeong Ho Cho ${ }^{\text {a }}$, and Sungjoo Lee ${ }^{\text {a,b }}{ }^{\text {† }}$
${ }^{\text {a }}$ SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 440-746, Korea
${ }^{\mathrm{b}}$ School of Information and Communication, Sungkyunkwan University (SKKU), Suwon 440746, Korea

Contents

Figure S1. OM image of OFET device structure
Figure S2. EDS analysis of $\mathbf{T i}_{\mathbf{2}} \mathbf{C T}_{\mathbf{x}}$ flake

Figure S3. Evaluation of the mobility attenuation factor $\boldsymbol{\theta}$

Figure S4. Part of the transfer curve in Figure 3a and $\mathbf{V}_{\mathbf{g}}$ dependence of mobility

Figure $\mathbf{S 5}$. \mathbf{I}_{ds} vs. \mathbf{V}_{g} curve in Figure 3 d in liner scale

References

Figure S1. Optical microscopy (OM) image of organic field-effect transistor (OFET) device structure.

Proper $\mathrm{Ti}_{2} \mathrm{CT}_{\mathrm{x}}$ flakes are identified and metal electrodes are then formed. After pentacene is deposited, the source/drain contacts were formed between pentacene and $\mathrm{Ti}_{2} \mathrm{CT}_{\mathrm{x}}$ as shown in the above OM image.

Figure S2. Energy-dispersive spectrometry (EDS) analysis of a $\mathbf{T i}_{\mathbf{2}} \mathbf{C T}_{\mathbf{x}}$ flake. Scale bars, $1 \mu \mathrm{~m}$.

Figure S 2 a shows a scanning electron microscopy (SEM) image of a $\mathrm{Ti}_{2} \mathrm{CT}_{\mathrm{x}}$ flake on SiO_{2} substrate. Figure S2b and c show EDS mapping of the white dashed square in Figure S2a, for fluorine (F) and oxygen (O), respectively. Full coverage and uniform distribution of F and O are observed, which indicates that the $\mathrm{Ti}_{2} \mathrm{CT}_{\mathrm{x}}$ surface is fully terminated with surface groups $(-\mathrm{F},-\mathrm{OH}$ and $/ \mathrm{or}-\mathrm{O}) .{ }^{\mathrm{Sl}}$ This is consistent with the X-ray photoelectron spectroscopy (XPS) results in Figure 1 in main text.

Figure S3. Evaluation of the mobility attenuation factor $\boldsymbol{\theta}$. Note that $\boldsymbol{\theta}$ is extracted at the high gate field (strong accumulation region) where the Y function method is valid.

The transfer characteristics (I_{ds} versus V_{g}) in the linear region can be expressed as:
$\mathrm{I}_{\mathrm{ds}}=\mathrm{G}_{\mathrm{m}} \mathrm{V}_{\mathrm{ds}}\left(\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{th}}\right) /\left[1+\theta\left(\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{th}}\right)\right] .^{\mathrm{S} 2}$
Here, $\mathrm{G}_{\mathrm{m}}=(\mathrm{W} / \mathrm{L}) \mu_{0} \mathrm{C}_{\mathrm{i}}$ is the transconductance parameter in which μ_{0} is low-field mobility; $\mathrm{V}_{\text {th }}$ is the threshold voltage; and θ is the mobility attenuation factor.

The Y -function is defined as $\mathrm{Y}=\mathrm{I}_{\mathrm{ds}} / \mathrm{g}_{\mathrm{m}}{ }^{0.5},{ }^{\mathrm{S} 3}$ so
$\left.\mathrm{Y}=\left(\mathrm{G}_{\mathrm{m}} \mathrm{V}_{\mathrm{ds}}\right)^{0.5}\left(\mathrm{~V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{th}}\right)=\left[(\mathrm{W} / \mathrm{L}) \mu_{0} \mathrm{C}_{\mathrm{i}} \mathrm{V}_{\mathrm{ds}}\right)\right]^{0.5}\left(\mathrm{~V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{th}}\right)$, then
$\mathrm{dY}=\left[(\mathrm{W} / \mathrm{L}) \mu_{0} \mathrm{C}_{\mathrm{i}} \mathrm{V}_{\mathrm{ds}}\right)^{0.5} \mathrm{dV}_{\mathrm{g}}$
Thus, μ_{0} can be extracted from the slope of Y versus V_{g}. (see Figure 3d in main text)
Once μ_{0} is known, G_{m} can be extracted as $\mathrm{G}_{\mathrm{m}}=(\mathrm{W} / \mathrm{L}) \mu_{0} \mathrm{C}_{\mathrm{i}}$

The transconductance, g_{m}, can be obtained:
$\mathrm{g}_{\mathrm{m}}=\mathrm{dI}_{\mathrm{ds}} / \mathrm{dV}_{\mathrm{g}}=\mathrm{G}_{\mathrm{m}} \mathrm{V}_{\mathrm{ds}} /\left[1+\theta\left(\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{th}}\right)^{2}\right.$, so
$\mathrm{g}_{\mathrm{m}}{ }^{0.5}=\left(\mathrm{G}_{\mathrm{m}} \mathrm{V}_{\mathrm{ds}}\right)^{0.5 /[}\left[1+\theta\left(\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{th}}\right)\right]$, and
$1 / \mathrm{g}_{\mathrm{m}}^{0.5}=\left[1+\theta\left(\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{th}}\right)\right] /\left(\mathrm{G}_{\mathrm{m}} \mathrm{V}_{\mathrm{ds}}\right)^{0.5}$, then
$\mathrm{d}\left(1 / \mathrm{g}_{\mathrm{m}}{ }^{0.5}\right)=\left[\theta /\left(\mathrm{G}_{\mathrm{m}} \mathrm{V}_{\mathrm{ds}}{ }^{0.5}\right] \mathrm{dV}_{\mathrm{g}}\right.$
So θ can be extracted from the slope of $1 / \mathrm{gm}^{0.5}$ versus V_{g}. (see Figure S 3)
After G_{m} and θ are both known, Rc can be calculated from $\theta=\mathrm{G}_{\mathrm{m}} \times$ Rc. ${ }^{\text {S3 }}$

Figure S4. Part of the transfer curve in Figure 3a and \mathbf{V}_{g} dependence of mobility.
Figure S4 shows the transfer curve in Figure 3a on a linear scale, with the mobility values in Figure S4 all extracted by the linear-regime equation: $\mu=\left(\mathrm{dI}_{\mathrm{ds}} / \mathrm{dV}_{\mathrm{g}}\right) \times\left[\mathrm{L} /\left(\mathrm{WC}_{\mathrm{i}} \mathrm{V}_{\mathrm{ds}}\right)\right]$. The linear-regime equation is valid when: $\left|\mathrm{V}_{\mathrm{ds}}\right|<\left|\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{th}}\right|{ }^{\mid}{ }^{4} \mathrm{~V}_{\mathrm{ds}}$ was -20 V and V_{th} was extracted as -25 V , so the linear-regime
equation is valid when $\mathrm{V}_{\mathrm{g}}<-45 \mathrm{~V}$, shown as the green region in Figure S 4 . The extracted mobility values are valid in this region, and are located in a very narrow range $\left(0.9-1.1 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$ where the V_{g} dependence of the mobility can barely be observed.

Figure S5. $I_{d s}$ vs. V_{g} curve in Figure 3d in liner scale.

We used the constant-Rc mode to fit the experimental curve with the equation: $\mathrm{I}_{\mathrm{ds}}=\mathrm{V}_{\mathrm{ds}} /\left\{\mathrm{Rc}+1 /\left[\left(\mathrm{V}_{\mathrm{g}}-\right.\right.\right.$ $\left.\left.\left.\mathrm{V}_{\mathrm{th}}\right) \mu_{0} \mathrm{C}_{\mathrm{i}} \mathrm{W} / \mathrm{L}\right]\right\},{ }^{\mathrm{S} 5,6}$ where μ_{0} is the contact-free mobility. As shown in Figure S 5 , the shape of the experimental curve could be well-described by the constant-Rc mode. The extracted Rc was $2.3 \mathrm{k} \Omega \mathrm{cm}$, which is consistent with the Rc value extracted by the Y -function method ($3 \mathrm{k} \Omega \mathrm{cm}$).

References

S1. Y. Yang, S. Umrao, S. Lai and S. Lee, J Phys Chem Lett, 2017, 8, 859-865.

S2. Y. Gim, B. Kang, B. Kim, S. G. Kim, J. H. Lee, K. Cho, B. C. Ku and J. H. Cho, Nanoscale, 2015, 7, 14100-14108.

S3. Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek and G. Ghibaudo, J Appl Phys, 2010, 107.
S4. E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu and D. J. Gundlach, Nat Commun, 2016, 7.
S5. D. Braga and G. Horowitz, Appl Phys a-Mater, 2009, 95, 193-201.
S6. C. H. Kim, Y. Bonnassieux and G. Horowitz, Ieee Electr Device L, 2011, 32, 1302-1304.

