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Figure S1. Optical microscopy (OM) image of organic field-effect transistor (OFET) device 

structure.

Proper Ti2CTx flakes are identified and metal electrodes are then formed. After pentacene is deposited, 

the source/drain contacts were formed between pentacene and Ti2CTx as shown in the above OM image.

Figure S2. Energy-dispersive spectrometry (EDS) analysis of a Ti2CTx flake. Scale bars, 1m.



Figure S2a shows a scanning electron microscopy (SEM) image of a Ti2CTx flake on SiO2 substrate. 

Figure S2b and c show EDS mapping of the white dashed square in Figure S2a, for fluorine (F) and 

oxygen (O), respectively. Full coverage and uniform distribution of F and O are observed, which 

indicates that the Ti2CTx surface is fully terminated with surface groups (–F, –OH and/or –O).S1 This is 

consistent with the X-ray photoelectron spectroscopy (XPS) results in Figure 1 in main text.

Figure S3. Evaluation of the mobility attenuation factor . Note that is extracted at the high 

gate field (strong accumulation region) where the Y function method is valid.

The transfer characteristics (Ids versus Vg) in the linear region can be expressed as:

Ids = GmVds(Vg − Vth)/[1 + (Vg − Vth)].S2 

Here, Gm = (W/L)0Ci is the transconductance parameter in which 0 is low-field mobility;

Vth is the threshold voltage; and is the mobility attenuation factor.

The Y-function is defined as Y = Ids/gm
0.5,S3 so 

Y = (GmVds)0.5(Vg − Vth) = [(W/L)0Ci Vds)] 0.5(Vg − Vth), then



dY = [(W/L)0Ci Vds)] 0.5dVg

Thus, 0 can be extracted from the slope of Y versus Vg. (see Figure 3d in main text)

Once 0 is known, Gm can be extracted as Gm = (W/L)0Ci

The transconductance, gm, can be obtained: 

gm = dIds/dVg = GmVds/[1 + (Vg − Vth)]2, so

gm
0.5 = (GmVds)0.5/[1 + (Vg − Vth)], and

1/gm
0.5 = [1 + (Vg − Vth)]/(GmVds)0.5, then

d(1/gm
0.5) = [/(GmVds)0.5]dVg

So  can be extracted from the slope of 1/ gm
0.5 versus Vg. (see Figure S3)

After Gm and  are both known, Rc can be calculated from = Gm × Rc.S3

Figure S4. Part of the transfer curve in Figure 3a and Vg dependence of mobility.

Figure S4 shows the transfer curve in Figure 3a on a linear scale, with the mobility values in Figure S4 

all extracted by the linear-regime equation: μ = (dIds/dVg) × [L/(WCiVds)]. The linear-regime equation 

is valid when: |Vds|<|Vg－Vth|.S4 Vds was -20V and Vth was extracted as -25V, so the linear-regime 



equation is valid when Vg<-45 V, shown as the green region in Figure S4. The extracted mobility values 

are valid in this region, and are located in a very narrow range (0.9-1.1 cm2V-1s-1) where the Vg 

dependence of the mobility can barely be observed.

Figure S5. Ids vs. Vg curve in Figure 3d in liner scale.

We used the constant-Rc mode to fit the experimental curve with the equation: Ids=Vds/{Rc+1/[(Vg－

Vth)0CiW/L]},S5, 6 where 0 is the contact-free mobility. As shown in Figure S5, the shape of the 

experimental curve could be well-described by the constant-Rc mode. The extracted Rc was 2.3 kΩ cm, 

which is consistent with the Rc value extracted by the Y-function method (3 kΩ cm).
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