Supporting Information

Organic Field-Effect Transistors Integrated with Ti_2CT_x Electrodes

Shen Lai^a, Sung Kyu Jang^a, Jeong Ho Cho^a, and Sungjoo Lee^{a,b†}

^a SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 440-746, Korea

^b School of Information and Communication, Sungkyunkwan University (SKKU), Suwon 440-746, Korea

Contents

- Figure S1. OM image of OFET device structure
- Figure S2. EDS analysis of Ti₂CT_x flake
- Figure S3. Evaluation of the mobility attenuation factor $\boldsymbol{\theta}$
- Figure S4. Part of the transfer curve in Figure 3a and V_{g} dependence of mobility
- Figure S5. $I_{ds}\,vs.\,V_g$ curve in Figure 3d in liner scale

References

Figure S1. Optical microscopy (OM) image of organic field-effect transistor (OFET) device structure.

Proper Ti_2CT_x flakes are identified and metal electrodes are then formed. After pentacene is deposited, the source/drain contacts were formed between pentacene and Ti_2CT_x as shown in the above OM image.

Figure S2. Energy-dispersive spectrometry (EDS) analysis of a Ti₂CT_x flake. Scale bars, 1µm.

Figure S2a shows a scanning electron microscopy (SEM) image of a Ti_2CT_x flake on SiO₂ substrate. Figure S2b and c show EDS mapping of the white dashed square in Figure S2a, for fluorine (F) and oxygen (O), respectively. Full coverage and uniform distribution of F and O are observed, which indicates that the Ti_2CT_x surface is fully terminated with surface groups (–F, –OH and/or –O).^{S1} This is consistent with the X-ray photoelectron spectroscopy (XPS) results in Figure 1 in main text.

Figure S3. Evaluation of the mobility attenuation factor θ . Note that θ is extracted at the high gate field (strong accumulation region) where the Y function method is valid.

The transfer characteristics $(I_{ds} \text{ versus } V_g)$ in the linear region can be expressed as: $I_{ds} = G_m V_{ds} (V_g - V_{th}) / [1 + \theta (V_g - V_{th})].^{S2}$ Here, $G_m = (W/L) \mu_0 C_i$ is the transconductance parameter in which μ_0 is low-field mobility; V_{th} is the threshold voltage; and θ is the mobility attenuation factor.

The Y-function is defined as $Y = I_{ds}/g_m^{0.5}$, so $Y = (G_m V_{ds})^{0.5} (V_g - V_{th}) = [(W/L)\mu_0 C_i V_{ds})]^{0.5} (V_g - V_{th})$, then $dY = [(W/L)\mu_0 C_i V_{ds})]^{0.5} dV_g$

Thus, μ_0 can be extracted from the slope of Y versus V_g. (see Figure 3d in main text) Once μ_0 is known, G_m can be extracted as G_m = (W/L) μ_0 C_i

The transconductance, g_m, can be obtained:

 $g_{m} = dI_{ds}/dV_{g} = G_{m}V_{ds}/[1 + \theta(V_{g} - V_{th})]^{2}, \text{ so}$ $g_{m}^{0.5} = (G_{m}V_{ds})^{0.5}/[1 + \theta(V_{g} - V_{th})], \text{ and}$ $1/g_{m}^{0.5} = [1 + \theta(V_{g} - V_{th})]/(G_{m}V_{ds})^{0.5}, \text{ then}$ $d(1/g_{m}^{0.5}) = [\theta/(G_{m}V_{ds})^{0.5}]dV_{g}$

So θ can be extracted from the slope of 1/ $g_m^{0.5}$ versus V_g. (see Figure S3) After G_m and θ are both known, Rc can be calculated from $\theta = G_m \times \text{Rc.}^{\text{S3}}$

Figure S4. Part of the transfer curve in Figure 3a and $V_{\rm g}$ dependence of mobility.

Figure S4 shows the transfer curve in Figure 3a on a linear scale, with the mobility values in Figure S4 all extracted by the linear-regime equation: $\mu = (dI_{ds}/dV_g) \times [L/(WC_iV_{ds})]$. The linear-regime equation is valid when: $|V_{ds}| < |V_g - V_{th}|$.^{S4} V_{ds} was -20V and V_{th} was extracted as -25V, so the linear-regime

equation is valid when $V_g <-45$ V, shown as the green region in Figure S4. The extracted mobility values are valid in this region, and are located in a very narrow range (0.9-1.1 cm²V⁻¹s⁻¹) where the V_g dependence of the mobility can barely be observed.

Figure S5. $I_{ds}\,vs.\,V_g$ curve in Figure 3d in liner scale.

We used the constant-Rc mode to fit the experimental curve with the equation: $I_{ds}=V_{ds}/\{Rc+1/[(V_g-V_{th})\mu_0C_iW/L]\}$,^{S5, 6} where μ_0 is the contact-free mobility. As shown in Figure S5, the shape of the experimental curve could be well-described by the constant-Rc mode. The extracted Rc was 2.3 k Ω cm, which is consistent with the Rc value extracted by the Y-function method (3 k Ω cm).

References

S1. Y. Yang, S. Umrao, S. Lai and S. Lee, J Phys Chem Lett, 2017, 8, 859-865.

- S2. Y. Gim, B. Kang, B. Kim, S. G. Kim, J. H. Lee, K. Cho, B. C. Ku and J. H. Cho, *Nanoscale*, 2015, 7, 14100-14108.
- S3. Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek and G. Ghibaudo, *J Appl Phys*, 2010, 107.
- S4. E. G. Bittle, J. I. Basham, T. N. Jackson, O. D. Jurchescu and D. J. Gundlach, *Nat Commun*, 2016, 7.
- S5. D. Braga and G. Horowitz, *Appl Phys a-Mater*, 2009, **95**, 193-201.
- S6. C. H. Kim, Y. Bonnassieux and G. Horowitz, *Ieee Electr Device L*, 2011, **32**, 1302-1304.