Supporting information for

Dopant-dependent Crystallization and Photothermal Effect of Sb-doped SnO₂ Nanoparticles as Stable Theranostic Nanoagents for Tumor Ablation

- Nuo Yu,^a Chen Peng,^b Zhaojie Wang,^a Zixiao Liu,^a Bo Zhu,^a Zhigao Yi,^c Meifang Zhu,^a Xiaogang Liu,^c Zhigang Chen^{*, a}
- ^aState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- ^bDepartment of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji university, Shanghai 200072, Peoples Republic of China
- ^cDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

*Corresponding authors. E-mail: <u>zgchen@dhu.edu.cn</u>

1 Characterization and photothermal test

Morphology of samples were investigated by a high-resolution transmission electron microscopy (HR-TEM, JEM-2100F) equipped with energy dispersive spectroscopy (EDS). Powder X-Ray diffraction (XRD) patterns were recorded on a Bruker D4 X-ray diffractometer. The electronic states of elements were analyzed by using X-ray photoelectron spectroscopy (PHI-5400, Perkin-Elmer). The concentrations were determined using a Leeman Laboratories Prodigy high-dispersion inductively coupled plasma atomic emission spectroscopy (ICP-AES, Prodigy) by dissolving the samples into regia solution followed by the heat treatment at 120 °C for 12 h. The Fourier transform infrared (FTIR) spectrum was acquired from samples in KBr pellets using an IRPrestige-21 spectrometer (Shimadzu). UV-vis-NIR absorption spectra were measured by UV–vis–NIR spectrophotometer (Shimadzu UV-3600). Hydrodynamic size

distribution was carried out with the Zatasizer (Malvern). Hydrodynamic size distribution was carried out with the Zatasizer Nano Z (Malvern).

To measure the photothermal properties of the samples, 1064-nm semiconductor laser (SFOLT Co. Ltd, Shanghai, China) was used to irradiate a plastic tube containing water or undoped/doped SnO_2 aqueous dispersion (0.1 mL). The infrared thermal images and temperature were recorded using an infrared camera (A300; FLIR systems Inc.).

2 Calculation of photothermal conversion efficiency

The photothermal transduction efficiency was calculated using below equations as:

$$\eta_T = \frac{hA(\Delta T_{max,dis} - \Delta T_{max,H20})}{I(1 - 10^{-A_{1064}})}$$
(S1)

where *h*, *A*, *I*, and A_{1064} respectively denote the heat transfer coefficient, the surface area of the container, the laser power (250 mW), and the absorbance (0.6006) of the dispersion at 1064 nm. $\Delta T_{\text{max,dis}}$ and $\Delta T_{\text{max,H2O}}$ are the temperature change of the nanocrystal dispersion and deionized water at the equilibrium maximum temperature (**Fig. 5b**). The value of *hA* can be calculated from equation (S2) as:

$$\tau_s = \frac{m_{H20}C_{H20}}{hA} \tag{S2}$$

where the system time constant τ_s is respectively determined to be 113 and 112 s for Sb_{0.2}-SnO₂ and deionized water in **Fig. 5c,d** (Here we defined the τ_s as 113); m_{H2O} and C_{H2O} are the mass (0.1 g) the heat capacity (4.2 J g⁻¹) of deionized water. Therefore, we can calculate the η_T of the present nanocrystals to be 48.3 %.

3 Figures

Fig. S1 Size distributions of the pure and Sb-doped SnO₂ samples.

Fig. S2 EDS pattern of $Sb_{0.2}$ - SnO_2 nanocrystals.

Fig. S3 TEM images of 0.3/1.0, 0.5/1.0, 1.0/1.0-A and 1.0/1.0-B samples.

Fig. S4 (a) Survey XPS spectra and (b) Sn 3d spectra of the undoped SnO₂ sample and SbCl₃/SnCl₄= 0.2/1.0 sample. (c) Sb 3d spectrum of SbCl₃/SnCl₄ = 0.2/1.0 sample. (d) The deconvolution of Sb 3d_{3/2} peak.

Fig. S5 Temperature curve of ICG solution during laser ON/OFF cycles (808 nm, 2.0 W cm⁻²). The inset shows the color change of ICG solution before and after irradiation.

Fig. S6 TEM image of $Sb_{0.2}$ -SnO₂ nanocrystals after laser irradiation.

Fig. S7 Photograph of $Sb_{0.2}$ -SnO₂ nanocrystals dispersed in chloroform with the addition of one drop of oleic acid.

Fig. S8 (a) FT-IR spectra of A: fresh NCs, B: BSA, and C: BSA-modified NCs. (b) Hydrodynamic sizes of $Sb_{0.2}$ -SnO₂ nanocrystals before and after BSA modification. c) Photograph of fresh nanocrystals and BSA-modified nanocrystals dispersed in PBS, respectively.

Fig. S9 Temperature elevation curves of mice at post-injection of nanocrystals or saline under the irradiation of 1064-nm laser with the intensity of 1.0 W cm⁻².