1 Supplementary Informatio

2

High-performance asymmetric supercapacitor based on vanadyl phosphate/carbon nanocomposite and polypyrrole-derived carbon nanowire

6

7 Ningna Chen,^a Jinhua Zhou,^a Guoyin Zhu,^a Qi Kang,^b Hongmei Ji,^a Yu Zhang,^a

8 Xizhang Wang,^a Luming Peng,^a Xuefeng Guo,^a Chunliang Lu,^c Jing Chen,^d Xiaomiao

- 9 Feng,^b Wenhua Hou^{a,*}
- 10
- 11

¹² ^a Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and

13 Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

¹⁴ ^b Key Laboratory for Organic Electronics & Information Displays, Institute of

15 Advanced Materials, School of Materials Science & Engineering, Nanjing University

16 of Posts and Telecommunications, Nanjing 210046, P. R. China.

^c Analytical Testing Center, Yangzhou University, Yangzhou 225009, P. R. China.

- ¹⁸ ^d College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing
- 19 211816, P. R. China.

20

21 Corresponding author. Tel: (+86)-25-89686001

22 E-mail address: whou@nju.edu.cn

- 2 Scheme S1. Schematic illustration for the synthesis of (a) VOPO₄/C nanocomposites
- 3 and (b) PPy-derived carbon nanowires (PCN).

- 6 Scheme S2. Schematic representation for the charge and discharge mechanism of
- 7 VOPO₄/C-600//PCN asymmetric supercapacitor in aqueous KOH electrolyte.

Fig. S1 TEM images at different magnifications of VOPO₄/C-400 (a, b)
VOPO₄/C-600 (c, d) and VOPO₄/C-800 (e, f), respectively.

6 Fig. S2 (a) Cyclic voltammetry curves of VOPO₄/C-600//PCN asymmetric 7 supercapacitor at increasing voltage window from 1.0 V to 1.6 V, all acquired at 100 8 $mV \cdot s^{-1}$ and (b) Corresponding galvanostatic charge-discharge curves at a current 9 density of $1.0 \text{ A} \cdot \text{g}^{-1}$ from 1.0 V to 1.6 V.

10

1

Table S1 Results of XPS peak fitting for (a) VOPO₄/C-400, (b) VOPO₄/C-600 and (c)

(a) Peak	Position (eV)	Relative peak area (%)	FWHM (eV)
O-C=O	288.5	4.1	1.7
C=O	287.0	6.8	1.4
С–О	286.0	13.3	1.3
C-C/C=C	284.8	75.8	1.3
(b) Peak	Position (eV)	Relative peak area (%)	FWHM (eV)
O-C=O	288.6	3.6	1.9
C=O	286.9	6.0	1.2
С-О	286.0	12.0	1.2
C-C/C=C	284.8	78.4	1.2
(c) Peak	Position (eV)	Relative peak area (%)	FWHM (eV)
0–C=0	288.6	3.7	1.8
C=O	286.8	6.1	1.1
С–О	286.0	12.4	1.1
C-C/C=C	284.8	77.8	1.2

2 VOPO₄/C-800 in the C 1s region.

1 Table S2 Results of XPS peak fitting for (a) VOPO₄·2H₂O, (b) VOPO₄/C-400, (c)

(a) Peak	Position (eV)	Relative peak area (%)	FWHM (eV)
$V^{+5}(2p_{1/2})$	525.6	17.0	2.4
$V^{+4}(2p_{1/2})$	524.2	9.9	2.6
$V^{+5}(2p_{3/2})$	518.5	48.2	1.1
$V^{+4}(2p_{3/2})$	516.9	24.9	1.8
(b) Peak	Position (eV)	Relative peak area (%)	FWHM (eV)
$V^{+5}(2p_{1/2})$	525.0	10.0	1.5
$V^{+4}(2p_{1/2})$	524.0	16.8	2.0
$V^{+5}(2p_{3/2})$	517.3	33.0	1.8
$V^{+4}(2p_{3/2})$	516.7	40.2	1.8
(c) Peak	Position (eV)	Relative peak area (%)	FWHM (eV)
$V^{+5}(2p_{1/2})$	525.0	9.4	1.5
$V^{+4}(2p_{1/2})$	524.1	16.1	1.9
$V^{+5}(2p_{3/2})$	517.4	32.6	1.8
$V^{+4}(2p_{3/2})$	516.6	41.9	1.9
(d) Peak	Position (eV)	Relative peak area (%)	FWHM (eV)
$V^{+5}(2p_{1/2})$	525.0	9.5	1.4
$V^{+4}(2p_{1/2})$	524.0	19.2	2.0
17+5(0)	517 2	31.6	18
$V^{+3}(2p_{3/2})$	517.3	51.0	1.0

2 VOPO₄/C-600 and (d) VOPO₄/C-800 in the V 2p region.

Matarial	Canacitanas	Rate	Cycling	Dof
Material	Capacitance	capability	performance	Kei
VOPO4/C-600	$469 \text{ F} \cdot \text{g}^{-1}$	77%	94% (2 $A \cdot g^{-1}$ for	This
composite	$(1 \text{ A} \cdot \text{g}^{-1})$	$(1 \text{ to } 10 \text{ A} \cdot \text{g}^{-1})$	5000 cycles)	work
Amorphous VOPO4/graphene (2:1)	483 F·g ⁻¹ (1 A·g ⁻¹)	74% (1 to 10 $A \cdot g^{-1}$)	80% (2 A⋅g ⁻¹ for 5000 cycles)	1
VOPO ₄ /graphene-based flexible ultrathin-film supercapacitor	8360.5 μ F·cm ⁻² (0.2 A· cm ⁻²)	/	96% (2000 cycles)	2
VOPO ₄ -graphene	$50 \text{ F} \cdot \text{g}^{-1}$	47%	85% (100 mV·s ⁻¹	3
nanocomposite	$(1 \text{ A} \cdot \text{g}^{-1})$	(1 to 10 $A \cdot g^{-1}$) for 5000 cycles)		5
VOPO4/RGO	$378 \text{ F} \cdot \text{g}^{-1}$ (5 mV·s ⁻¹)	68% (0.5 to 10 A·g ⁻¹)	64% (20 mV·s ⁻¹ for 1000 cycles)	4
VOPO ₄ ·H ₂ O	202 $F \cdot g^{-1}$ (2 mV·s ⁻¹)	67.4% (0.2 to 2 A·g ⁻¹)	/	5

2 the present work with those reported VOPO₄-based composite electrodes.

Table S3 A comparison of specific capacitance, rate capability and cycle stability of

1	Table S4 A list of gravimetric and	volumetric specific capacitances	of the assembled
1	Table 54 A list of gravimetric and	volumetric specific capacitances	of the assembled

2 asymmetric supercapacitor device (VOPO₄/C-600//PCN) at different current densities.

Current density (A·g ⁻¹)	Gravimetric specific capacitance $(F \cdot g^{-1})$	Current density (A·cm ⁻³)	Volumetric specific capacitance $(F \cdot cm^{-3})$
1.0	84.7	0.5	44.2
2.0	75.3	1.1	40.1
4.0	68.0	2.1	35.4
8.0	58.1	4.2	30.2
10.0	52.5	5.2	27.6

3

4

5 **References**

6 1 N. N. Chen, J. H. Zhou, Q. Kang, H. M. Ji, G. Y. Zhu, Y. Zhang, S. Y. Chen, J. Chen, X. M. Feng

7 and W. H. Hou, J. Power Sources, 2017, **344**, 185-194.

8 2 C. Z. Wu, X. L. Lu, L. L. Peng, K. Xu, X. Peng, J. L. Huang, G. H. Yu and Y. Xie, Nat. Commun.,

9 2013, **4**, 2431.

10 3 K. H. Lee, Y. W. Lee, S. W. Lee, J. S. Ha, S. S. Lee and J. G. Son, Sci. Rep., 2015, 5, 13696.

11 4 Y. B. He, X. F. Yang, Y. L. Bai, J. Y. Zhang, L. P. Kang, Z. B. Lei and Z. H. Liu, Electrochim.

12 Acta, 2015, **178**, 312-320.

13 5 Z. Y. Luo, E. H. Liu, T. T. Hu, Z. P. Li and T. T. Liu, Ionics, 2015, **21**, 289-294.