Supporting Information for

Substrate modified thermal stability of mono- and few-layer MoS₂

Xuewen Wang^{1,#}, Wen Fan^{2,#}, Ziwei Fan¹, Wanyu Dai¹, Kunlei Zhu¹, Shengzhe Hong¹, Yufei Sun¹, Junqiao Wu², Kai Liu^{1,*}

¹ State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Enginnering, Beijing 100084, China

² Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA

* Corresponding author. E-mail: liuk@tsinghua.edu.cn

[#] These authors contributed equally to this work.

1. Experimental setup for thermal annealing

The exfoliated MoS_2 flakes on different substrates (mica, SiO_2/Si . Al_2O_3) were pushed into the thermostatic zone of a quartz tube, heated to 250, 270, 290 and 300 °C at a rate of 20 °C /min , and then held for 15 minutes before opening the lid to cool. See the methods for details.

Fig. S1 Schematic diagrams of the thermal annealing equipment setup.

2. Evidence of the presence of MoO₃ particles after thermal annealing

Comparing Fig. S2a and Fig. S2b, it was found that part of the bilayer region was thinned into a monolayer after thermal annealing at 290 °C. Meanwhile, particles appeared in the thinned area, as shown in Fig.S2c. These particles were most likely to be MoO₃.

Fig. S2 MoO₃ particles on SiO₂ substrate after thermal annealing. Optical images of a bilayer MoS₂ before (a) and after (b) annealed at 290 °C under 10 kPa pressure. (c) AFM topography image after the annealing at 290 °C.

3. Method of calculating the length of etching

Equation s1.1 shows the calculation of the average length of etched triangles, where L1, L2 and L3 represent the three side lengths of a triangle. Fig. S3 specifically describes the measurement of one of the triangles.

Fig. S3 The calculation of average triangle length.

4. Etching of MoS₂ flakes on mica substrate

Fig. S4a and S4b are microscopic images of MoS₂ flakes on mica before and after thermal annealing. After annealed at 270°C, many etched triangular pitches appeared on the monolayer MoS₂, while the bilayer and multilayers MoS₂ remained less changed. Fig. S4c shows an AFM image of Fig. S4b, emphasizing the different etching behaviors between monolayer MoS₂ and multilayer MoS₂.

Fig. S4 Opical images of MoS_2 on mica before (a) and after (b) annealed at 270 °C at 10 kPa pressure. (c) AFM topography image of MoS_2 on mica after annealed at 270 °C at 10 kPa pressure.

5. Thicknesses of monolayer MoS₂ on different substrates

Fig. S5 (a) AFM images and (b) height scanning curves of the monolayer MoS_2 on Al_2O_3 , SiO₂ and mica substrates.

6. Determination of mica surface crystal orientation and composition

Referring to Fig. S6a, after comparison with the standard card, the mica we used was found to have a monoclinic crystalline structure, and the normal crystalline orientation is along the <001> direction. Fig. S6c shows the XPS spectra of mica, with a detailed analysis of each peak; the content of each element in mica can be semiquantitatively determined. Its chemical formula can be written as KAl₂ [AlSi₃O₁₀] [OH]₂.

Fig S6 (a) Diffraction image and **(b)** SEM image of mica, demonstrating a monoclinic crystal of space group C2 with a (001) crystal plane, whose orientation is in the <001> direction perpendicular to the crystal plane. **(c)** XPS measurement showed that the chemical formula of the mica used is KAl₂ [AlSi₃O₁₀] [OH]₂.

7. Schematic of mica crystal surface

Fig. S7 A schematic showing mica crystal (001) surface structure (referring to Cheng, et.al, Ref. 45 in the maintext).

8. Thermal etching of MoS₂ grown by chemical vapor deposition (CVD)

Fig. S8 AFM topography images of CVD monolayer MoS_2 , which were originally grown on a SiO₂/Si substrate and then transferred to mica (a) and SiO₂/Si (b) substrates. After annealed at 240°C for 15min at atmospheric pressure, the monolayer MoS_2 flakes were almost completely etched both on mica (c) and on SiO₂/Si (d) substrates.