Supporting Information

CdS nanospheres decorated hollow polyhedral ZCO derived from metal-organic framework (MOF) for effective photocatalytic water evolution

Wenxia Chen^a, Jiasheng Fang^a, Yiwei Zhang^{a*}, Guangliang Chen^b, Shuo Zhao^a, Chao Zhang^a, Ran Xu^a, Jiehua Bao^a, Yuming Zhou^{a*}, Xin Xiang^a

^aSchool of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, P. R. China.

^bKey Laboratory of Advanced Textile Materials and Manufacturing Technology, and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

* Corresponding authors. E-mail: <u>zhangchem@seu.edu.cn</u>; <u>ymzhou@seu.edu.cn</u>. Tel: +86 25 52090617; Fax: +86 25 52090617.

Fig. S1 Thermogravimetric analysis (TGA) curve of as-prepared bimetallic ZnCo-ZIF

and ZIF-67 under N_2 with a ramp of 10 $^{\circ}\text{C}\cdot\text{min}^{\text{-1}}.$

Fig. S2 (a) XRD patterns of ZCO, (b) SEM images of ZCO, (c) SEM images of

 Co_3O_4 , The SEM images of Co_3O_4 sample fabricated with different temperature: (d)

350 °C, (e) 450 °C, (f) 550 °C.

Fig. S3 (a) XRD patterns of ZnCo-ZIF, (b) low-magnification and (c) high-

magnification FESEM images of ZnCo-ZIF, (d) XRD patterns of ZIF-67, (e) low-

magnification and (f) high-magnification FESEM images of ZIF-67.

Fig. S4 EDS spectra of the 30wt% CdS/ZCO sample.

Fig. S5 TEM images of ZCO.

Fig. S6 TEM images of 30 wt% CdS/ZCO and the corresponding TEM elemental

mapping of O, Zn, S, Cd and Co.

•

Fig. S7 (a) TEM image of CdS, (b) XRD patterns of CdS.

Fig. S8 (a) UV-Vis absorption spectra of ZCO and Co₃O₄, (b) Band gap value of ZCO

and Co₃O₄.

Fig. S9 The H_2 evolution rates of CdS/ZCO loaded with different CdS percentages

when the sacrifice agent is methanol.

Fig. S10 The H_2 evolution rates of CdS/ZCO and ZCO without amino group when

sacrifice agent is lactic acid.

	Atomic concentration (%)		Atomic ratio
Sample	Ν	С	N/C
10 wt% CdS/ZCO	4.6	26.7	0.17
20 wt% CdS/ZCO	10.7	34.2	0.31
30 wt% CdS/ZCO	14.9	37.4	0.39
50 wt% CdS/ZCO	6.6.	36.5	0.18

Table S1 The summary of the atomic compositions of the composites calculated with

the EDX data.