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1. Computational Model and Methodology

1.1. DPD Method

All simulations performed in the course of this study are based on the DPD method, a
coarse-grained molecular dynamics simulation technique. DPD simulations can correctly and
accurately capture hydrodynamics of complex fluids, while retaining essential information
about the structural properties of the system components [1, 2]. The DPD method has been
widely used and successfully applied for studying problems related to behaviors of lipid
vesicles or polymers and their interactions with lipid bilayers. [3–12] The basic interacting
sites in DPD simulations are represented by soft beads. Between each pair of DPD beads,
effective two-body interactions consist of three major forces [1, 2]: a conservative force FC ,
a random force FR and a dissipative force FD. Specifically, the conservative force between
beads i and j is FC

ij = aijω(rij)eij , where rij denotes the distance between the two beads i and
j, and eij is the unit vector pointing from i to j; aij represents the maximum repulsion force.
The weighting factor ω(rij) is a normalized distribution function as ω(rij) = 1 − rij/r0 for
rij ≤ r0, while ω(rij) = 0 for rij > r0. Here r0 is the cutoff distance for pairwise interactions.
The random forces are specified by FR

ij =
√

2βijkBT/∆t ω(rij)αeij , where α represents a
normal distributed Gaussian random number with zero mean and unit variance, ∆t denotes
the integration time step, βij is a bead friction coefficient taken as below [13, 14]:

βij =


4.5 aij < 35

9.0 35 ≤ aij < 75

20.0 aij ≥ 75

(1)

kB and T stand for Boltzmann’s constant and temperature, respectively. The dissipative force
is given by FD

ij = −βijω2(rij)(eij · vij)eij , where vij is the relative velocity vector between
beads i and j. The conservative force is a purely repulsive interaction, while the random
and dissipative forces acting along the centers of the soft beads conserve linear and angular
momentum, respectively.

1.2. Lipid and PEG Models

All the lipid molecules in our simulations share the same model, in which two lipid tails
(with four tail beads each) are connected with two head beads respectively. And the head
group contains three head beads. Adjacent beads making the lipid molecules are connected
by the harmonic spring potential Us1 = Ks1(rij − rs1)

2, with spring coefficient Ks1 = 64

kBT/r
2
0, and equilibrium distance rs1 = 0.5r0. The stiffness of the lipid tails is guaranteed

by an angular potential Uθ1 = Kθ1(1 − cos θ) with Kθ1 = 15kBT . Pair-wise interactions aij
between lipid beads are listed in Table S1. Under control of these parameters, the tension
of planar bilayer follows a linear relation with the lipid molecular area [14, 15]. The surface
tension of planar bilayer is defined as the integral of difference between normal and lateral
component of the pressure tensor [16, 17]:
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Σ =

∫
dz[pzz(z)− 1/2(pxx(z) + pyy(z))]

= A−1
∑
i<j

(Fij,zzij − 1/2(Fij,yyij + Fij,xxij))
(2)

where z-axis is the normal direction of the planar bilayer interface. pzz, pyy and pxx are
the pressure components along the z, y and x directions, respectively. A is the area of the
xy-plane. Fij is the conservative force between particles i and j. The stretch modulus of
membrane can be obtained by the slope in Fig. S1, KA = 17.42kBT/r

2
0. And the bending

rigidity of membrane obtained from κ = KAd
2
HH/48 [18, 19] is round κ ≈ 6 kBT .
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Figure S1: Relation between membrane tension and lipid area.

A hydrophilic PEG polymer in DPD simulations is modeled by a linear chain consisting
of coarse-grained monomers. The monomers of PEG polymers are sequentially connected by
a harmonic bond potential: Us2 = Ks2(rij − rs2)2, with spring stiffness Ks2 = 2111.3kBT/r

2
0

and equilibrium distance rs2 = 0.4125r0. The flexibility of the PEG polymer is tuned by an
angular potential between each three consecutive monomers, defined by Uθ2 = Kθ2(cos θ −
cos θ0)

2, with bending stiffness Kθ2 = 16.4946kBT , and equilibrium angle θ0 = 130°.
Such a DPD PEG model could correctly reproduce the conformation of a PEG polymer in
water, including the radius of gyration and end-to-end distance, as shown in our previous
studies [10, 20]. To describe the PEGylated lipid, one end of the PEG polymer is bonded
to the lipid head through a harmonic bond potential. And the monomer on the free end of
a PEG polymer is considered as targeting moiety. The molecular weight of a PEG polymer
in experiments ranges from 500-5000 Da [21–23]. Note that tethered PEG polymers with
large molecular weight on surface leads to a pronounce growth in NP size, which requires
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tremendous computational cost to finish the membrane wrapping process. The polymerization
degree N of PEG polymers in our simulation is set as N = 30 (representing a molecular
weight around 1000 Da), to reach a balance between computational efficiency and generality.
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Figure S2: Diffusion coefficient of receptors in planar membrane and ligands on liposome
surface. (A) Diffusion coefficients of receptors in planar membrane under different
membrane tensions. (B) Diffusion coefficients of receptors on liposome surface with
different PEG molar ratios. The radius of liposome is R = 7r0.

To explore the influence of membrane tension on the diffusion of receptor, we calculate
its diffusion coefficients under different membrane tensions. The diffusion coefficient of
receptor in the planar membrane is obtained from measuring mean squared displacement,
Dlipid =< (∆x)2 + (∆y)2 > /4t, where ∆x and ∆y are the displacements of receptors
in planar directions x and y respectively. t is the time difference over which diffusion is
tested. As shown in Fig. S2.A, the receptor diffusion coefficients only slightly change with
membrane tensions. The deviation of diffusion coefficients is less than 9%, which indicates
that the diffusion of receptors in membrane is irrelevant to the membrane tension, which
is consistent with experimental results [24]. Moreover, we calculate the receptor diffusion
coefficient Dlipid ' 7.3× 10−2 r20/τ by averaging the values under different tensions.

The diffusion of ligand on the free end of PEG polymers might be affected by the
variation of PEG polymer molar ratio on the liposome surface. We then further tested the
ligand diffusion coefficients. The ligands on PEG polymers are directly connected with the
PEGylated lipids in liposome. Here, we measured the diffusion coefficients of PEGylated
lipids to reflect the diffusion behaviors of ligands. The lateral diffusion coefficient of
PEGylated lipid is calculated from its mean squared displacement on the spherical liposome
surface. Therefore, the diffusion coefficient of ligand is given by [25]Dligand =< 4R2ϕ2 > /t,
where R is the radius of liposome. ϕ is the angle between the membrane normal vector at
t = 0 and t = t. The normal vector is defined as the connecting vector between center-of-
mass (COM) of liposome and COM of the PEGylated lipid. Here, the diffusion coefficient
is obtained by fitting the mean squared displacement in the first 106 time steps. As given in
Fig. S2.B, due to the tightly packing between PEG polymers under higher moral ratio, the
diffusion coefficient of ligand Dligand decreases with the increasing of PEG molar ratio. More
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important, the diffusion coefficient of ligand Dligand is smaller than that of receptor.
Within our DPD model, different types of beads have identical masses and cutoff

distances for pairwise interactions. For the sake of transferability, the mass, length and time
scales are all normalized. The unit length is taken to be the cutoff distance r0. The unit mass
is m for all the beads and is set to unity. In addition, the unit energy is defined by the thermal
energy kBT . All other dimensional quantities can thus be uniquely made dimensionless in
terms of these basic units (and vice versa).

The time step in our DPD simulations is chosen as ∆t = 0.01τ , with τ =
√
mr20/kBT .

The number density of beads in the simulation box is fixed at 3/r30 [2]. The velocity-Verlet
integration algorithm is adopted for the time integration. The reduced units can be mapped
to SI units using a real bilayer thickness and a measured value for the in-plane diffusion
coefficient of lipids, as shown in previous studies [14,15]. From the experiments, the thickness
of membrane is dHH ≈ 3.53 nm [26] and thickness in our simulation is dHH ≈ 4 r0. The
physical length scale could then obtained by the relation of r0 ' 0.9 nm. Comparing the
experimental lipid lateral diffusion coefficient D ' 5 µm2/s of DMPC [27] and one in
our simulation Dlipid ' 7.3 × 10−2 r20/τ , we can obtain the physical time scale τ = 11.8

ns. Periodic boundary conditions are applied along all directions of the simulation box. All
the simulations are performed by using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS), distributed by Sandia National Laboratories [28].

Table S1: Interaction parameters, aij , between beads i and j, in the DPD simulation. S, H, T,
and E represent solvent (water), lipid head, lipid tail, and PEG beads, respectively.

aij [kBT/r0] S H T E
S 25.0 30.0 75.0 26.3
H 30.0 30.0 35.0 26.3
T 75.0 35.0 10.0 33.7
E 26.3 26.3 33.7 25.0

1.3. Simulation Protocol

To prepare the PEGylated NPs, lipid molecules is firstly randomly distributed into a simulation
box to form a liposome through self-assembly process at temperature T = 1.0. Then certain
number of lipids in the outer layer is randomly chosen to graft with PEG chains on the
lipid head beads according to the targeted PEGylated lipid molar ratio. The PEGylated
liposomes then further relax for 1 × 106 τ under temperature of T = 1.0. Two kinds of
liposomes with 800 and 1701 lipids are prepared. Their radius sizes are around 7 r0 and 15
r0, respectively. Planar membrane bilayer is relaxed in the box size of (70 × 70 × 100) r30,
which is large enough to avoid the influence of simulation box size on endocytosis. Finally,
the fully relaxed PEGylated liposomes are placed above the planar bilayer to investigate the
membrane wrapping process. During this process, to explore the effect of PEG mobility,
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bilayer in liposome and the included water beads are treated with three different ways: (1)
No additional restriction is applied on the liposome, such that the liposome itself is able to
deform under stress and the PEGylated lipid could freely diffuse on the surface because of the
fluid state of the bilayer; (2) All of the lipid molecules and the water beads inside together are
considered as a single rigid body, which means that the liposome could not deform (like a solid
NPs) and the tethered points of PEG polymers are fixed on the surface; (3) All the water beads
inside liposome are treated as a single rigid body, in which situation the liposome can hardly
deform under stress because of the rigid water core, while the PEG polymer can still move on
the liposome surface. Following these procedures, we can ensure that the chemical properties
of all the PEGylated NPs are the same. By comparing the differences during endocytosis of
these three kinds of NPs, we can clearly reveal the influence of PEG mobility on endocytosis.

During endocytosis, in view of the length scale difference between the NP (< 100 nm)
and cell (∼ 10 µm), the internalization of NPs should not affect the surface tension of the cell
membrane. To mimic this condition and reproduce the constant membrane surface tension in
our DPD simulations, we adopt the N -varied DPD method. Instead of controlling the lateral
pressure/force of the membrane, this method takes an alternative approach to ensure a constant
membrane tension, by controlling the number of lipids per unit area. It has been widely used to
study the endocytosis of NPs in DPD simulations [10, 20, 29–31]. In practice, the boundaries
of the lipid bilayer are treated as a lipid reservoir for the addition and removal of lipids. If
the lipid number per unit area is larger (or smaller) than the target density ρ1 (or ρ2), lipid
molecules will be deleted (or inserted) into this boundary region to maintain a constant lipid
number density. Meanwhile, a corresponding number of water molecules will be inserted (or
deleted) randomly in the simulation box to ensure a constant water bead density of 3.0/r30 in
the DPD simulations. By using theN -varied DPD protocol, the lipid density in the membrane
is easily controlled to maintain the membrane’s lateral tension during the endocytosis process.

To mimic the ligand-receptor interaction, we assume that 50% of the lipid molecules in
the planar bilayer act as receptors, which means that the number of receptors is large enough
compared to the number of ligands on the NPs surface. Then, the receptor diffusion induced
limited efficiency [32] in the endocytosis could be excluded in our simulations. The targeting
moieties (ligands) conjugated to the free ends of PEG polymers interact with receptors as
following:

Uij =

{
4εligand[(σb/rij)

12 − (σb/rij)
6]− Ucut, rij <= rcut

0, rij > rcut

(3)

Here, rcut = r0 for a short-range attractive interaction. Ucut = 4εligand[(σb/r0)
12 − (σb/r0)

6].
The equilibrium distance is fixed to be σ = 0.624r0. Additionally, the repulsive force is set to
be 25 kBT/r0, if it is larger than 25 kBT/r0. Then the ligand-receptor binding strength could
be computed as:

εb = ln{1 +

∫ ∞
0

dr[exp(−Uij)− 1]} (4)

Here we set εligand = 12kBT , corresponding to the binding strength around 6.8kBT .
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1.4. Self-consistent mean field theory

To interpret the DPD simulation results and reveal the underlying physical mechanism, we
employ an independent self-consistent field (SCF) theoretical approach to estimate the free
energy of PEG polymers with fixed tethered point. The SCF result allows us to calculate the
radial volume fraction profile φ(r) of the spherical brush, the volume fraction profile of the
terminal monomers, φ(r) and the corresponding free energy, Fpolymer. The measured PEG
profiles could be recovered using a simplest classical model of a polymer under good solvent
conditions [10, 20], which is characterized by a dimensionless mixing free energy density
νfm(φ) = τφ2 + ωφ3 with τ = ω = 1, where ν = 0.0633 nm3 denotes the excluded volume
of a PEG monomer. Within the SCF we basically aim at minimizing a single chain free energy
function that is composed of elastic and interaction parts,

Fp
kBT

=
3

2

〈r2ee〉
R2

0

+

∫
fm(φ)d3r (5)

where 〈r2ee〉 = V −1
∫

(r − d/2)2φd3r is the mean squared extension of a polymer that
is tethered on a sphere of diameter d, properly normalized by the occupied chain volume
V =

∫
φd3r = Nν, andR0 = R0(N) represents the equilibrium size of a PEG polymer. Here

we take R2
0 = 〈R2

ee〉/e, using the available R2
ee(N) values for a single PEG chain. The above

free energy is minimized with respect to the volume fraction profile, subject to the constraint
of conserved V and the tethering condition, φ(r < d/2) = 0. A most common numerical
implementation of the related optimization problem on a geometry-adapted grid have been
introduced by Scheutens and Fleer [33]. We follow the implementation described in detail
by Wijmans and Zhulina [34]. To this end, a single flexible polymer is grown sequentially,
using a constant bond length a = 0.33 r0 (for PEG), starting from a spherical surface of
diameter d. During random growth within the space surrounding the NP, the representative
chain creates its own radial volume fraction profile to which it reacts, as the volume fraction
enter the probability to choose from all possible directions, at each step of growth procedure.
To be precise, it reacts by its current radial coordination r to the dimensionless exchange
chemical potential U(φ)/kBT = νf ′m(φ) = 2φ + 3φ2 contained in a segment weighting
factor G1(r) = exp(−U(r)/kBT ), where we recall that φ = φ(r). The problem is thus
closely related to a diffusion process in the presence of a potential and boundary, and can
in principle also be formally treated using Green’s functions. Accordingly, one introduces
Gn(r), the average statistical weight of an n-mer of which the last segment is located in layer
r. Gn(r) = Gn−1(r)G1(r) for n = 2, . . . , N , where the spatial average is taken over a
sphere of radius a. We are left with a closed set of coupled equations, where the average play
the role of the coefficients of a linear system of equations that can be solved in an iterative
fashion using simple matrix inversions. Due to head-tail symmetry of the polymer chains,
the volume fraction profile of an n-mer is subsequently obtained from the solution Gn(r)

via φ(r) = CnGn(r)GN−n+1(r)/G1(r), where the Cn’s are normalization factors that follow
from ν =

∫
φ(r)d3r and finally φ(r) = ΣN

n=1φ(r) as well as φN(r) are obtained. Because
the volume fraction profiles φ of the unwrapped PEGylated NP are all well recorded, we
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can estimate the free energy difference ∆Fpolymer = ∆Fp between wrapped and unwrapped
PEGylated NP upon inserting the two measured φ(r)’s separately in to Eq.5

1.5. Computation of membrane energy
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Figure S3: (A) Illustration of membrane wrapping geometry and parameters. θ is the
wrapping angle. S is the arc length. φ is the angle tangent to the membrane profile. The
wrapping region of membrane is represented by red line. The free part of membrane is
represented by the blue line. (B) Illustration of an ellipsoidal nanoparticle. a and b are the
lengths of half major and minor axes, respectively.

To estimate the membrane elastic energy in our simulations, a theoretical model is developed.
In the theory, we assume that a planar membrane wraps around a solid NP (cf. Fig. S3.A),
which has rotational symmetry with the axis z. Based on the Canham-helfrich’s framework
[35], the total elastic energy of membrane under certain wrapping angle could be described as

EMEM = EMBend + EMTen (6)

where EMBend is the membrane bending energy. EMTen represents the membrane tension
energy. In our model, we consider a symmetric membrane and assume no topological change
during the whole wrapping process. Then the bending energy for the membrane could be
expressed as:

EMBend =

∫
S

κ(c1 + c2)
2ds (7)

where, κ is the membrane bending rigidity. c1 and c2 are the principle curvatures on the
membrane surface, respectively. The tension energy could be calculated by

EMTen = σ∆S (8)

where σ is the membrane tension and ∆S is the excess area caused by the bending of
membrane.
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1.5.1. Spherical nanoparticle As illustrated in Fig. S3, the elastic energy of membrane
could be divided into two parts:(1) the wrapping part and (2) the free part. The geometry
of the wrapping part is determined by the shape of NP. For a spherical NP, the bending energy
in the wrapping part is EBwrap = 4πκ(1 − cos θ). And the corresponding tension energy
is ETwrap = πr2σ(1 − cos θ)2, where r is the radius of spherical NPs. To calculate the
membrane geometry of the free part, we assume tangent angle φ(s2) has a Fourier series from
with respect to the free part of arch length s2 [36, 37].

φ(s2) = φ0 +
φ1 − φ0

L
s2 +

n∑
i=1

ai sin
(π
L
is2

)
(9)

where ai is Fourier amplitude and L is the total arch length of free part membrane. φ0 is the
tangent angle of membrane in the contact region between wrapping and free parts. φ1 is the
tangent angle of membrane far away from NPs. This kind of method has been successfully
applied to explore the profile of vesicle induced by the interactive NPs in the works of Gozdz
et al. [36] and Wang et al. [37]. To satisfy the boundary condition, in the connecting region,
both φ0 = θ and z(0) = r − cos(θ)r should be satisfied to ensure the smooth connection
between wrapping and free parts of membrane. In the region far wary from NPs, φ1 = 0 and
dφ
ds2

= 0, which can ensure the bending and tension energies vanish for the membrane far wary
from NPs [38]. More terms in Fourier series are better, for the free part of membrane here,
we find that n = 20 could already well describe the profile of deformed membrane. After
characterization, the membrane bending and tension energies of free part could be obtained
by

EBfree = πκ

∫ L

0

rs(s2)[
dφ

ds2
+

sinφ

rs(s2)
]2ds2, (10)

ETfree = σ

∫ L

0

πrs(s2)ds (11)

where rs(s2) =
∫ s2
0

cosφds′ + sin(θ)r. Then the total elastic energy of free part becomes
a function of ai and L. By performing the energy minimization, we could get the profile of
membrane and the energy of EBfree + ETfree. We use the particle swarm optimization (PSO)
algorithm to do the numerical optimization [39].

1.5.2. Ellipsoidal nanoparticle For an ellipsoidal NP with shape function of (x2 + y2)/a2 +

z2/b2 = 1 (a and b are the lengths of half major and minor axes, respectively), the bending
energy of the wrapping part could be obtained by EBwrap = 2a2πκ

∫ θ
0
M(θ′)dθ′, where

M(θ) = λ
2a

1+cos2 θ+λ2 sin2 θ
(cos2 θ+λ2 sin2 θ)3/2

is the mean curvature at the point P = (a sin θ,−b cos θ) on
the ellipsoid, λ = b/a. The tension energy of wrapped part could then be calculated by
ETwrap = σ(S(θ) − πr2s(θ)), where S(θ) = 2a2π

∫ θ
0

sin θ(cos2 θ + λ2 sin2 θ)dθ is the surface
are of the wrapped part. And rs(θ) = a sin θ is the distance from the point P to the axis of
rotation. In addition, the boundary conditions at the connection between wrapping and free
parts tan(φ0) = b/a tan θ and z(0) = b − b cos θ are satisfied. Also, rs(s2) in the Eq. 11
follows the relation as rs(s2) =

∫ s2
0

cosφ ds′ + a sin θ. All other procedures are the same as
spherical NP.
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2. Endocytosis of large PEGylated rigid nanoparticle

t=10000𝝉

t=4000𝟎𝝉
t=20000𝝉

t=0

t=120000𝝉
t=100000𝝉t=60000𝝉 t=80000𝝉

t=0

t=10000𝝉

t=20000𝝉
t=40000𝝉

t=60000𝝉 t=80000𝝉
t=100000𝝉 t=120000𝝉

P
E

G
y
la

te
d

 R
ig

id
 N

P
, 

R
=

1
5
r 𝟎

A

P
E

G
y
la

te
d

 L
ip

o
s

o
m

e
, 
R

=
1
5
r 𝟎

B

Figure S4: Representative snapshots for membrane wrapping processes of (A) PEGylated
rigid NP and (B) PEGylated liposome with size of r = 15 r0. The membrane tension in both
cases is controlled at 0.08 kBT/r

2
0. Water beads are not shown for clarity.
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Figure S5: Comparison of (A) wrapping ratio, (B) ligand-receptor binding ratio and (C)
asphericity between PEGylated rigid NP and liposome during the membrane wrapping
process in Fig.S4.

3. Endocytosis of PEGylated nanoparticle with rigid water core
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Figure S6: Endocytosis of 20 mol% PEGylated nanoparticle with rigid water core under
membrane tension of −0.038kBT/r

2
0 . (A) Snapshots of PEGylated nanoparticle with rigid

water core during endocytosis. (B-C) Comparison of wrapping ratio, ligand-receptor binding
ratio and asphericity between PEGylated rigid water NP here and the PEGylated liposome in
Fig. 2 of the main text.
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To further exclude the influence from liposome deformation, we try to explore the membrane
wrapping of PEGylated nanoparticle with rigid water core. Here, the water beads inside the
liposome in the main text of Fig. 2B are treated as a single rigid body. Thus, the PEG polymers
in PEGylated nanoparticle with rigid water core could freely diffuse on the surface. However,
because of the rigid water core, the lipid bilayer on the surface could barely deform. All
other conditions are the same as the ones in Fig. 2B of main text. As given in Fig. S6, the
whole membrane wrapping process is similar as the one of PEGylated liposome. The PEG
polymers aggregate in the contact region due their mobility. The half-wrapped PEGylated
nanoparticle with rigid water core bounces back to the less wrapped state afterwards. Both
the detailed information about wrapping ratio and ligand-receptor binding ratio are identical
as that of PEGylated liposome (Fig. S6.B and C). However, the asphericity value of rigid NP
is kept constant. Thus we could confirm that the PEG mobility is the main reason for the PEG
polymers aggregation and ‘bouncing back’ of PEGylated liposome.

References

[1] P. J. Hoogerbrugge and J. M. V. A. Koelman. Simulating microscopic hydrodynamic phenomena with
dissipative particle dynamics. Europhys. Lett., 19(3):155, 1992.

[2] Robert D Groot and Patrick B Warren. Dissipative particle dynamics: Bridging the gap between atomistic
and mesoscopic simulation. J. Chem. Phys., 107(11):4423, 1997.

[3] Isaac Salib, Xin Yong, Emily J Crabb, Nicholas M Moellers, Gerald T McFarlin I. V., Olga Kuksenok, and
Anna C Balazs. Harnessing fluid-driven vesicles to pick up and drop off janus particles. ACS Nano,
7(2):1224–1238, 2013.

[4] A Gama Goicochea, E Mayoral, J Klapp, and C Pastorino. Nanotribology of biopolymer brushes
in aqueous solution using dissipative particle dynamics simulations: an application to peg covered
liposomes in a theta solvent. Soft Matter, 10(1):166–174, 2014.

[5] Dmitry A Fedosov, George Em Karniadakis, and Bruce Caswell. Steady shear rheometry of dissipative
particle dynamics models of polymer fluids in reverse poiseuille flow. J. Chem. Phys, 132(14):144103,
2010.

[6] Xin Yong, Emily J Crabb, Nicholas M Moellers, and Anna C Balazs. Self-healing vesicles deposit lipid-
coated janus particles into nanoscopic trenches. Langmuir, 29(52):16066–16074, 2013.

[7] Zhiqiang Shen, Mu-Ping Nieh, and Ying Li. Decorating nanoparticle surface for targeted drug delivery:
opportunities and challenges. Polymers, 8(3):83, 2016.

[8] Hong-Ming Ding and Yu-Qiang Ma. Theoretical and computational investigations of nanoparticle–
biomembrane interactions in cellular delivery. Small, 11(9-10):1055–1071, 2015.

[9] Ying Li, Wylie Stroberg, Tae-Rin Lee, Han Sung Kim, Han Man, Dean Ho, Paolo Decuzzi, and Wing Kam
Liu. Multiscale modeling and uncertainty quantification in nanoparticle-mediated drug/gene delivery.
Comput. Mech., 53(3):511–537, 2014.
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[19] Rüdiger Goetz, Gerhard Gompper, and Reinhard Lipowsky. Mobility and elasticity of self-assembled
membranes. Phys. Rev. Lett., 82(1):221, 1999.
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