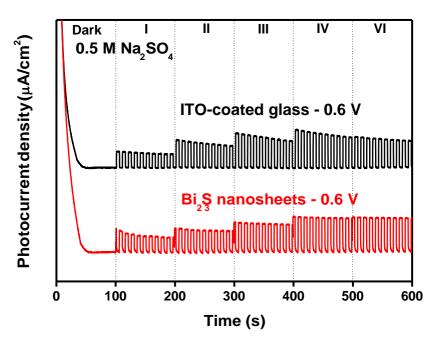
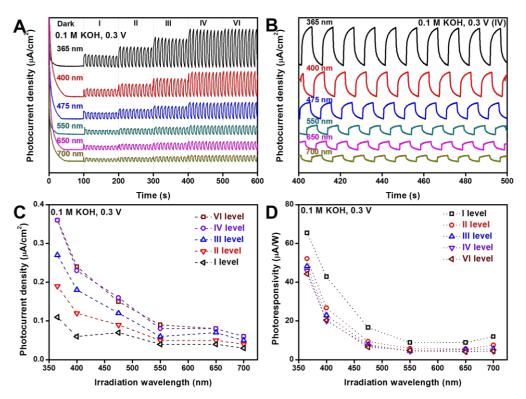
Supporting information for

## Facile Fabrication and Characterizations of Two-Dimensional Bismuth (III) Sulfide Nanosheets for High-Performance Photodetector Applications under Ambient Conditions

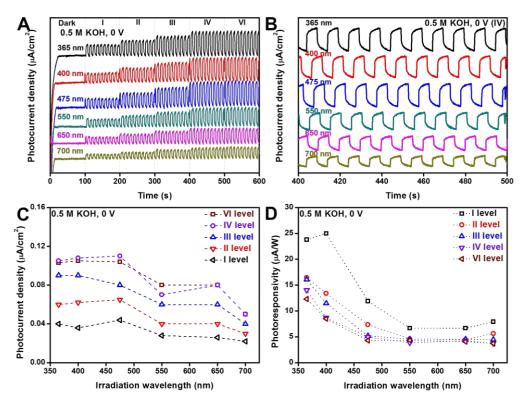
Weichun Huang,‡<sup>a</sup> Chenyang Xing,‡<sup>a</sup> Yunzheng Wang,<sup>a</sup> Zhongjun Li,<sup>b</sup> Leiming Wu,<sup>b</sup> Dingtao Ma,<sup>b</sup> Xiaoyu Dai,<sup>a</sup> Yuanjiang Xiang,<sup>a</sup> Jianqing Li,<sup>b</sup> Dianyuan Fan,<sup>a</sup> and Han Zhang\*<sup>a</sup>


<sup>a.</sup> SZU-NUS Collaborative Innovation Centre for Optoelectronic Science & Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China. E-mail: hzhang@szu.edu.cn

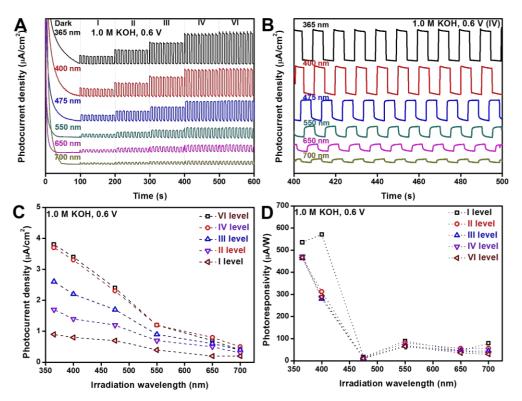
<sup>b.</sup> Faculty of Information Technology, Macau University of Science and Technology, Macao 519020, P. R. China


*‡Denotes equal first-author contribution.* 

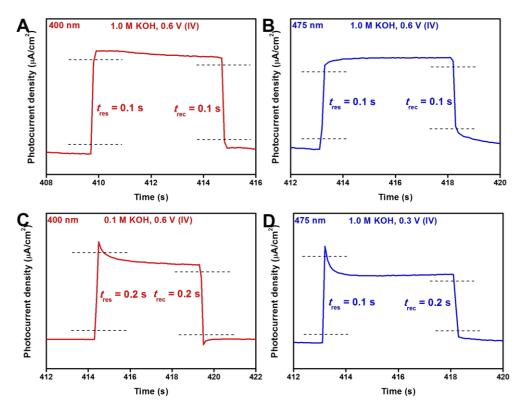
| The gradually increased $P_{\lambda}$ were labelled with <b>I</b> , <b>II</b> , <b>III</b> , <b>IV</b> , and <b>VI</b> levels, respectively. |                                  |         |          |           |          |          |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------|----------|-----------|----------|----------|
|                                                                                                                                              | $P_{\lambda} (\mathrm{mW/cm}^2)$ | I level | II level | III level | IV level | VI level |
|                                                                                                                                              | Simulated light<br>(SL)          | 26.2    | 53.0     | 83.1      | 118      | 122      |
|                                                                                                                                              | 365 nm                           | 0.764   | 1.66     | 2.55      | 3.57     | 3.69     |
|                                                                                                                                              | 400 nm                           | 0.637   | 2.04     | 3.57      | 5.22     | 5.35     |
|                                                                                                                                              | 475 nm                           | 1.91    | 4.33     | 7.01      | 10.1     | 10.6     |
|                                                                                                                                              | 550 nm                           | 2.04    | 3.95     | 5.98      | 8.28     | 8.40     |
|                                                                                                                                              | 650 nm                           | 2.04    | 4.08     | 6.02      | 8.54     | 8.92     |
|                                                                                                                                              | 700 nm                           | 1.15    | 2.42     | 4.08      | 6.11     | 6.14     |


**Table S1** The light powder density  $(P_{\lambda})$  of incident light with various irradiation wavelengths.

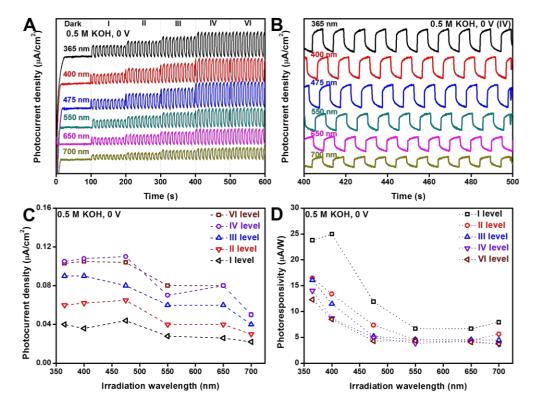



**Fig. S1.** Photoresponse behaviours of the  $Bi_2S_3$  nanosheets-based photodetector illuminated by SL in 0.5 M  $Na_2SO_4$  at a bias potential of 0.6 V. The ON/OFF time internal is 5s.

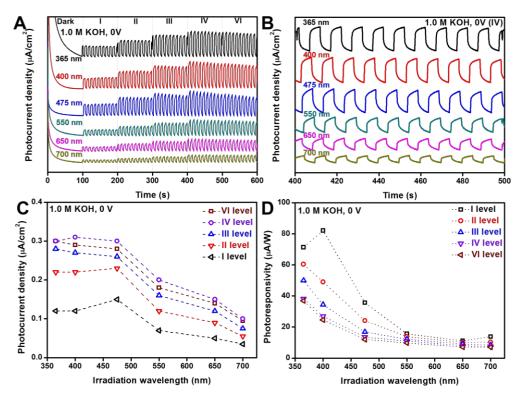



**Fig. S2.** Photoresponse behaviour of the  $Bi_2S_3$  nanosheets-based photodetector under the illuminations of light (365, 400, 475, 550, 650, and 700 nm), at an applied bias potential of 0.3 V in 0.1 M KOH, under various light power densities of I, II, III, IV and VI levels. For clarity, a naked ITO-coated glass was added in the profiles. (A) ON/OFF switching behaviours of photocurrent density ( $I_{ph}$ ) as a function of time, and (B) selected region under light power density at IV level. The ON/OFF time internal is 5s. (C)  $I_{ph}$  values as a function of irradiation wavelength under various light power densities. (D) Photoresponsivity ( $R_{ph}$ ) values as a function of irradiation wavelength under various light power densities.

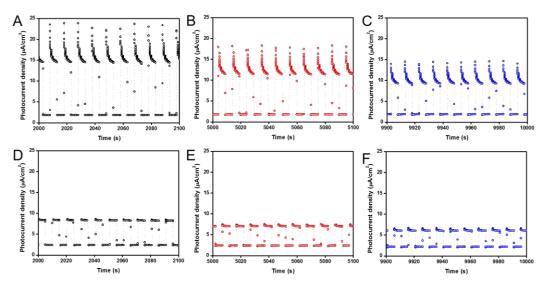



**Fig. S3.** Photoresponse behaviour of the  $Bi_2S_3$  nanosheets-based photodetector under the illuminations of light (365, 400, 475, 550, 650, and 700 nm), at an applied bias potential of 0.6 V in 0.5 M KOH, under various light power densities of I, II, III, IV and VI levels. For clarity, a naked ITO-coated glass was added in the profiles. (A) ON/OFF switching behaviours of photocurrent density ( $I_{ph}$ ) as a function of time, and (B) selected region under light power density at IV level. The ON/OFF time internal is 5s. (C)  $I_{ph}$  values as a function of irradiation wavelength under various light power densities. (D) Photoresponsivity ( $R_{ph}$ ) values as a function of irradiation wavelength under various light power densities.




**Fig. S4.** Photoresponse behaviour of the  $Bi_2S_3$  nanosheets-based photodetector under the illuminations of light (365, 400, 475, 550, 650, and 700 nm), at an applied bias potential of 0.6 V in 1.0 M KOH, under various light power densities of I, II, III, IV and VI levels. For clarity, a naked ITO-coated glass was added in the profiles. (A) ON/OFF switching behaviours of photocurrent density ( $I_{ph}$ ) as a function of time, and (B) selected region under light power density at IV level. The ON/OFF time internal is 5s. (C)  $I_{ph}$  values as a function of irradiation wavelength under various light power densities. (D) Photoresponsivity ( $R_{ph}$ ) values as a function of irradiation wavelength under various light power densities.




**Fig. S5.** The profiles of response time  $(t_{res})$  and recovery time  $(t_{rec})$  of the Bi<sub>2</sub>S<sub>3</sub>nanosheetsbased photodetector in various KOH concentration and applied bias potentials at 400 nm and 475 nm at the same level **IV**. (A) 400 nm, 1.0 M KOH, 0.6 V; (B) 475 nm, 1.0 M KOH, 0.6 V; (C) 400 nm, 0.1 M KOH, 0.6 V; (D) 475 nm, 1.0 M KOH, 0.3 V.



**Fig. S6.** Self-driven photoresponse behaviour of the Bi<sub>2</sub>S<sub>3</sub> nanosheets-based photodetector under the illuminations of light (365, 400, 475, 550, 650, and 700 nm), without an applied bias potential (0 V) in 0.5 M KOH under various light power densities of I, II, III, IV and VI levels. For clarity, a naked ITO-coated glass was added in the profiles. (A) ON/OFF switching behaviours of photocurrent density ( $I_{ph}$ ) as a function of time, and (B) selected region under light power density at IV level. The ON/OFF time internal is 5s. (C)  $I_{ph}$  values as a function of irradiation wavelength under various light power densities. (D) Photoresponsivity ( $R_{ph}$ ) values as a function of irradiation wavelength under various light power densities.



**Fig. S7.** Self-driven photoresponse behaviour of the Bi<sub>2</sub>S<sub>3</sub> nanosheets-based photodetector under the illuminations of light (365, 400, 475, 550, 650, and 700 nm), without an applied bias potential (0 V) in 1.0 M KOH under various light power densities of I, II, III, IV and VI levels. For clarity, a naked ITO-coated glass was added in the profiles. (A) ON/OFF switching behaviours of photocurrent density ( $I_{ph}$ ) as a function of time, and (B) selected region under light power density at IV level. The ON/OFF time internal is 5s. (C)  $I_{ph}$  values as a function of irradiation wavelength under various light power densities. (D) Photoresponsivity ( $R_{ph}$ ) values as a function of irradiation wavelength under various light power densities.



**Fig. S8.** Stability of photoresponse behaviour of the  $Bi_2S_3$  nanosheets-based photodetector illuminated by SL in 0.1 M KOH at a bias potential of 0.6 V before (A, B and C) and after (D, E and F) 1 month at **IV** level. A typical stability measurement lasted 10,000 s and specific moments of 2,000 s to 2,100 s (A and D), 5,000 s to 5,100 s (B and E) and 9,900 s to 10,000 s (C and F) were chosen to evaluate their stability behaviours.