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1 Theoretical relationship between the output current and structure size 

Figure S1 Simplified geometrical model of the optical projection controllable microweighing sensor.

The schematic illustration and geometrical model of the optical projection controllable microweighing sensor 
are shown in Figure S1. The microcantilever (MC) would produce a downward deflection when external weight 
applied on it. The projected area (S) of the MC on the ZnO photosensitive layer is given by the following equation,
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where Lprojection is the length of projected area boundary in x axis; b is the width of the guide structure of MC (10 

mm); are the boundary of MC projected area, as shown in Figure S1. The values of  at  |𝑂𝐴| 𝑎𝑛𝑑 |𝑂𝐵| |𝑂𝐴| 𝑎𝑛𝑑 |𝑂𝐵|
any bending angles of MC can be given as follows:
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where H is the height between the UV light source and the upper surface of the MC; t, h are the thickness (25 μm) 
and height of the MC, respectively; L0 is the horizontal distance between the UV light source and the geometric 
center of MC; L1 is the length of the beam of MC (6 mm); L2 is the length of the guide structure of MC (6 mm); θ is 
the bending angle of the MC.

Integrating equations 1–3, the projected area of the MC can be obtained as follows: 
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where α is the incident angle of UV light source. We can find that the projected area S of the MC is only related to 
the bending angle θ when the dimensions of optical microweighing sensor are determined. Here, it should be noted 
that θ must be less than incident angle of UV light source during the tests, otherwise the theoretical formula is not 
applicable. The reason can be explained as that the bending angles of MC aren’t able to be detected once it 
surpasses the illuminating area. Assuming that the photocurrent per unit area of photosensitive layer is I0 with a 
certain light intensity, the equation 4 can be further represented as follow:
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The bending angle of the MC θ is given by

                                                                         (6)
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where F is the weight applied on the MC, E is Young’s modulus and I is the area moment of the cross section with 

respect to the neutral axis of the MC. Equation 6 confirms that the bending angle of MC is related to the external 

applied weight. 

2 Simulation results about the deformation and weights 
Equations 1-6 are based on the consistent deformation of MC. If the deformation of MC is not coordinated, the 

actual projected areas would cause error with the theoretical projected areas. Hence, the uniform and consistent 

deformation of MC is very important for the performance of presented optical projection controllable 

microweighing sensor. The deformation of MC was simulated (parameters of simulation is shown in Table S1) and 

the results are shown in Figure S2, which indicated that the deformation of MC is uniform when different weights 

are applied on the surface (the loads are 3.3 mN (10°), 6.4 mN (20°), 10.1 mN (30°), 15.3 mN (40°), 22.5 mN (50°), 

31.2 mN (60°), 41.7 mN (70°), 51.6 mN (80°), respectively).

Figure S2 Relationship between the bending angle of MC and external applied weight. (a) θ =10°, (b) θ =20°, (c) θ 
=30°, (d) θ =40°, (e) θ =50°, (f) θ =60°, (g) θ =70°, (h) θ =80°. 

Table S1 Physical properties and structure parameters of MC (Kapton film)

Thickness Tensile modulus Poisson’s ratio Density b L1 L2 w

25 μm 2.5 GPa 0.34 1.42 g/cm3 10 mm 6 mm 6 mm 4 mm



The relationship between the deflection of MC and external applied weight can be confirmed with the 
deflection formulas1 of MC as follows: 
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where E is the tensile modulus of MC (2.5 GPa); w is the width of the MC beam (4 mm); F is the load applied on 
surface of the MC. Integrating equations 1–3, the relationship between the weight and displacement of MC can be 
obtained as
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3 Theoretical calculation of the adjustable range of UV light source

Figure S3 Schematic illustration of the adjustment of UV light source.

The detection of present optical projection controllable microweighing sensor does not require repetitive optical 
correction and the position of the UV light source can be adjusted within a wide range. The adjustable range (∆x and 
∆y) of UV light source in x and y axis can be calculated as follows (Figure S3):
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where Dx, Dy are the UV spot minor axis and major axis on the horizontal plane of MC, respectively, which are 
related to the divergence angle (θuv) and radius (w(z)) of UV spot. The θuv and w(z) can be obtained by Gaussian 
theory2,



                                                                  (13)
2

0 2
0

( ) 1 zw z w
w


 

   
 

                                                             (14) 
2 1/22 4 2 2

0
0

22 uv
z w z

w
  



 

Integrating equations 13-14, the Dx, Dy can be estimated as follows:
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where w0 is the diameter of UV light beam at the exit surface (22 mm); λ is the wavelength of UV light source (365 
nm); z is the distance between the UV light source and MC. Equations 15 and 16 indicate that Dx, Dy are controlled 
by z, however, α can also affect the Dy. Hence, ∆x and ∆y can be written as 
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The values of 0 and  are close to zero in near-field, ∆x and ∆y can be further 𝜆𝑧/𝜋𝜔
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simplified as
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