Supporting Information for

3D interconnected NH₄Fe_{0.6}V_{2.4}O_{7.4}@C nanocomposite with superior

sodium storage properties

Zhenmin Xiong, a Lei Chen, b Long Zhao, b Yanming Zhao, *b Jingjie Feng, a Chun mao Huang, b

Youzhong Dong, ^b Hui Zhang, ^aYang Wang, ^b Quan Kuang, ^b Qinghua Fan, ^b Shenghong Liu, ^b

Siyuan Chen, ^b

^aSchool of Material Science and Engineering, South China University of Technology, China ^bDepartment of Physics, South China University of Technology, Guangzhou, 510640, P. R. China Email: zhaoym@scut.edu.cn; Fax: +86-20-85511266; Tel: +86-20-87111963

Fig.S1.DSC/TG curves of as-prepared samples: (a) $NH_4Fe_{0.6}V_{2.4}O_{7.4}@0.5wt\%C$, (b) and $NH_4Fe_{0.6}V_{2.4}O_{7.4}@1.0wt\%C$; (c) ex situ XRD tests after the thermal analysis process

Fig.S2. (a) XRD patterns of $NH_4Fe_xV_{3-x}O_{8-x}$ (x=0.0, 0.5, 0.6); (b - e) Enlarged XRD patterns indicating the right shift of (001), (011), (002) and (012) peaks along with the content of doped Fe^{3+} increasing.

Fig.S3. TEM images and corresponding high-resolution TEM images of (a & d) $NH_4Fe_{0.6}V_{2.4}O_{7.4}$, (b & e) $NH_4Fe_{0.6}V_{2.4}O_{7.4}@0.5wt\%C$, (c & d) $NH_4Fe_{0.6}V_{2.4}O_{7.4}@1.0wt\%C$.

Sample .	Fe:V		
	Nominal tatio	ICP-AES result	
bare $NH_4V_3O_8$	0	0	
$NH_4Fe_{0.5}V_{2.5}O_{7.5}$	0.2	0.1764	
$NH_4Fe_{0.6}V_{2.4}O_{7.4}$	0.25	0.2226	
NH ₄ Fe _{0.75} V _{2.25} O _{7.25}	0.33	0.3658	
$NH_4Fe_{0.6}V_{2.4}O_{7.4}@0.5wt\%C$	0.25	0.2642	
$NH_4Fe_{0.6}V_{2.4}O_{7.4}@1.0wt\%C$	0.25	0.2299	

Table1 Nominal and ICP-AES measured results of cation mole ratios in the products

Fig.S4.X-ray photoelectron spectroscopy of (a), (b), (c), (d) and (e) O1s in $NH_4Fe_xV_{3-x}O_{8-x}$ (x=0, 0.5, 0.6) and $NH_4Fe_{0.6}V_{2.4}O_{7.4}@ywt\%$ C(y=0.5, 1.0) samples

Fig.S5. CV curves of (a) bare $NH_4V_3O_8$, (b) $NH_4Fe_{0.6}V_{2.4}O_{7.4}$, (c) $NH_4Fe_{0.6}V_{2.4}O_{7.4}$ @0.5wt%C and (d) $NH_4Fe_{0.6}V_{2.4}O_{7.4}$ @1.0wt%C samples.

Table 2

	(a)	(b)	(c)	(d)
BET surface areas (m ² /g)	2.08	12.64	33.48	15.40