Doping effect of non-metal group in porous ultrathin $g-C_3N_4$ nanosheets towards synergistically improved photocatalytic hydrogen evolution

Weinan Xing, ^a Gang Chen, ^{*a} Chunmei Li, ^b Zhonghui Han, ^a Yidong Hu, ^a Qingqiang Meng, ^a

Figure S1. Solid-state ¹³C NMR spectra of CN and CNB NS.

Figure S2. SEM image of CNH

Figure S3. XPS survey spectra of CN and CNB NS.

Figure S4. AFM (a) and corresponding height images (b) of CNB NS

Figure S5. Nitrogen adsorption–desorption isotherms (a) and the corresponding pore size distribution curves (b) of CN and CNB NS.

Figure S6. SEM images of melamine (a and b), melamine and BA before the pretreated with a hydrothermal process (c), melamine and BA after the pretreated with 2 hours hydrothermal process (d), melamine and BA after the pretreated with 6 hours hydrothermal process (e), melamine and BA after the pretreated with 10 hours hydrothermal process (f)

Sample	284.6 eV	286.3 eV	288.0 eV	293.5 eV
CN	13.98%	2.42%	79.72%	3.88%
CNB NS	28.75%	12.92%	56.55%	1.79%

Table S1 The contribution ratio of different peaks in C 1s for CN and CNB according to XPS analysis

Table S2 The contribution ratio of different peaks in N 1s for CN and CNB according to XPS analysis

Sample	398.4 eV	399.9 eV	401.1 eV	404.3 eV
CN	75.18%	16.26%	4.96%	3.60%
CNB NS	68.53%	19.85%	4.16%	7.46%

Table S3 Comparison of photocatalytic H_2 evolution of photocatalyst from recent publications.

Ref.	Photocatalyst	Sacrificial	The volume of the	The	AQE
		agent	reaction solution	wavelength	(%)
			(mL)		
This	CNB NS	TEOA	300	420 nm	7.45
work					
1	P-doped g-C ₃ N ₄	TEOA	-	420 nm	3.56
	nanosheets				
2	HCN	TEOA	100	420 nm	5.0
3	g-C ₃ N ₄ mesoporous	TEOA	100	420 nm	5.1
	nanomesh				
4	P-g-C ₃ N ₄ tubes	methanol	100	420 nm	5.68
5	CN-KCl/	TEOA	270	420 nm	5.7
	0.1 g NH ₄ Cl				
6	Carbon-Rich g-C ₃ N ₄	TEOA	50	400 nm	4.52
7	Copolymer g-C ₃ N ₄	TEOA	100	420 nm	3.95

References

- J. R. Ran, T. Y. Ma, G. P. Gao, X. W. Du and S. Z. Qiao, *Energ Environ Sci*, 2015, 8, 3708-3717.
- X. L. Wang, W. Q. Fang, W. Q. Liu, Y. Jia, D. W. Jing, Y. Wang, L. Y. Yang,
 X. Q. Gong, Y. F. Yao, H. G. Yang and X. D. Yao, *J Mater Chem A*, 2017, 5,

19227-19236.

- Q. Han, B. Wang, J. Gao, Z. H. Cheng, Y. Zhao, Z. P. Zhang and L. T. Qu, Acs Nano, 2016, 10, 2745-2751.
- S. E. Guo, Z. P. Deng, M. X. Li, B. J. Jiang, C. G. Tian, Q. J. Pan and H. G. Fu, *Angew Chem Int Edit*, 2016, 55, 1830-1834.
- Y. X. Li, H. Xu, S. X. Ouyang, D. Lu, X. Wang, D. F. Wang and J. H. Ye, J Mater Chem A, 2016, 4, 2943-2950.
- Y. F. Li, M. Yang, Y. Xing, X. C. Liu, Y. Yang, X. Wang and S. Y. Song, Small, 2017, 13.
- X. Q. Fan, L. X. Zhang, R. L. Cheng, M. Wang, M. L. Li, Y. J. Zhou and J. L. Shi, Acs Catal, 2015, 5, 5008-5015.