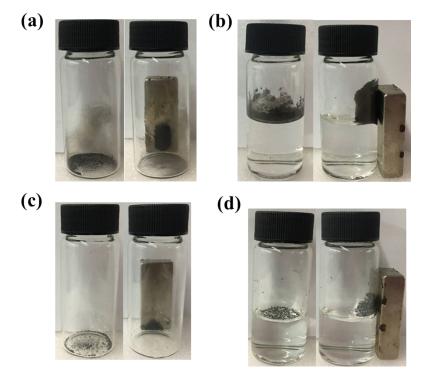
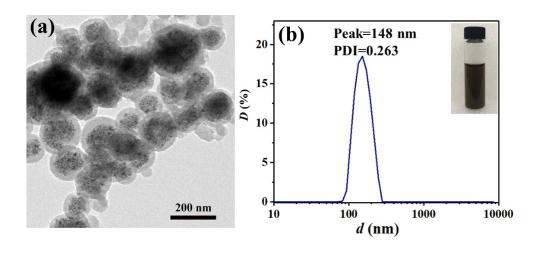
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018


Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supporting Information

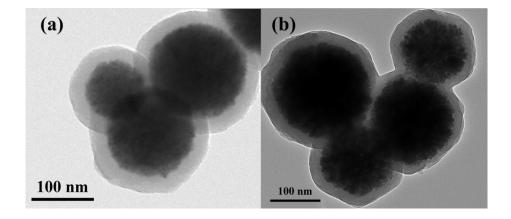
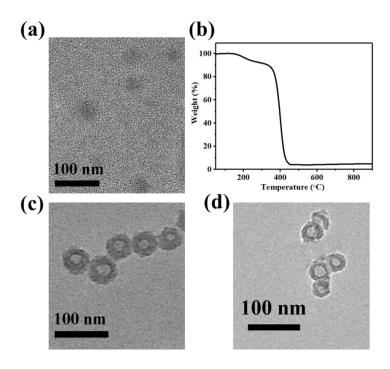
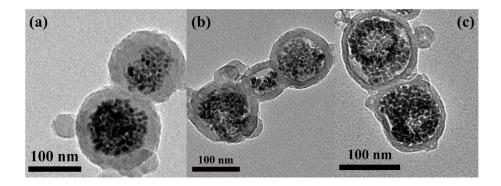

Enhanced oxygen reduction of multi-Fe $_3$ O $_4$ @carbon core-shell electrocatalysts through nanoparticle/polymer co-assembly strategy

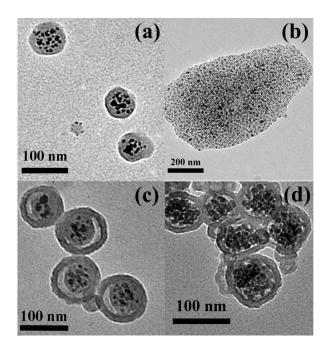
Jing Zhao, Congling Li and Rui Liu*

Ministry of Education Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science and Engineering and Institute for Advanced Study, Tongji University, 201804, Shanghai, China, E-mail: ruiliu@tongji.edu.cn

Fig.S1 Digital graphsof (a) Fe₃O₄NPs, (b) Fe₃O₄ NPs in water, (c) mFe₃O₄@C and (d) mFe₃O₄@C in water.

 $\textbf{Fig.S2} \ (a) \\ \text{TEM images and (b) DLS of mFe}_3\\ \text{O}_4\\ @\text{PS-}b\text{-PEO}\\ @\text{PDA}.$


Fig.S3 TEM images of (a) Fe_3O_4 @PDA and (b) Fe_3O_4 @C.

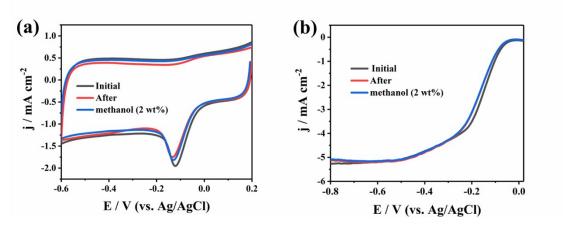

Fig.S4(a) TEM images of PS-*b*-PEO micelles and (b)TGA of PS-*b*-PEO micelles under nitrogen atmosphere, (c) and (d) TEM images of PS-*b*-PEO@PDA and derived hollow carbon shell.

Fig.S5 TEM images of mFe₃O₄@PS-b-PEO@PDA carbonized at different temperatures at (a) 100 °C,(b) 300 °C and (c) 500 °C.

Fig.S6 TEM images of $mFe_3O_4@PS-b$ -PEO from initial mass ratio of Fe_3O_4 /PS-b-PEO at (a) 0.3 and 10, (c) $mFe_3O_4@PS-b$ -PEO@PDA and (d) $mFe_3O_4@C$ prepared from initial mass ratio at 0.3 (denoted as $mFe_3O_4@C$ -s for convenience).

Fig.S7 (a) CV curves of mFe₃O₄@C and Pt/C after circulation and in the presence of methanol at a scan rate of 10 mV s⁻¹ in O₂-saturated. (b) LSV curves of mFe₃O₄@C and Pt/C after circulation and in the presence of methanol at a rotation rate of 1600 rpm.