Supporting Information

Efficient Entrapment and Catalytic Conversion of Lithium Polysulfides on Hollow Metal Oxides Submicro-spheres as Lithium-Sulfur Battery Cathodes

Feng Ma^a, Jiashun Liang^a, Tanyuan Wang^a, Xian Chen^a, Yining Fan^a, Benjamin

Hultman^b, Huan Xie^a, Jiantao Han^a, Gang Wu^{b,*}, Qing Li^{a,*}

^aState Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

^bDepartment of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, United States.

*E-mails: qing_li@hust.edu.cn (Qing Li); gangwu@buffalo.edu (Gang Wu).

Fig. S1 SEM image of the solid Co₃O₄ control sample.

Fig. S2 SEM image of the RF sphere template.

Fig. S3 (a) SEM and (b) TEM images of the Mn_2O_3 spheres.

Fig. S4 (a) SEM and (b) TEM images of the NiO spheres.

Fig. S5 N_2 adsorption/desorption curves and pore size distribution patterns of the Co_3O_4 , Mn_2O_3 , and NiO samples.

Fig. S6 XRD patterns of the S/C/Co₃O₄, S/C/Mn₂O₃, and S/C/NiO composites.

Fig. S7 SEM image of the S/C/Co₃O₄ material.

Fig. S8 SEM image of the $S/C/Mn_2O_3$ material.

Fig. S9 SEM image of the S/C/NiO material.

Fig. S10 TGA results of the $S/C/Co_3O_4$, $S/C/Mn_2O_3$, and S/C/NiO composites.

Fig. S11 XPS spectrum (S 2p) of bare carbon black after immersion in a Li_2S_4 solution.

Fig. S12 CV curves of the S/C/Co₃O₄, S/C/Mn₂O₃, S/C/NiO, and S/C electrodes with a scan rate of 0.1 mV s⁻¹.

Fig. S13 (a) Cycling performance of $S/C/Co_3O_4$ with a sulfur loading of 8.2 mg cm⁻² at 0.1 C; (b) the corresponding areal capacity *vs.* potential curve of the high sulfur loading $S/C/Co_3O_4$. The $S/C/Co_3O_4$ electrode was prepared by casting $S/C/Co_3O_4$ and sodium alginate slurry onto a nickel foam disk. The other preparation procedure is the same as the low sulfur loading electrode described in the main text.

Fig. S14 Cycling performance of the S/C/Co₃O₄-solid cathode at 0.5 C.

Fig. S15 EIS plots of the $S/C/Co_3O_4$, $S/C/Mn_2O_3$, S/C/NiO, and S/C electrodes from 100000 Hz to 0.1 Hz. (The cells are on fully charged state after 2 cycles of discharge/charge at 0.1 C)

Fig. S16 Tafel plots for Co₃O₄, Mn₂O₃, NiO and bare carbon in 0.1 M Li₂S₈.