## **Electronic Supplementary Information**

## Se@SiO<sub>2</sub>-FA-CuS Nanocomposites for Targeted Delivery of DOX and Nano Selenium in Synergistic Combination of Chemo-photothermal Therapy

Yeying Wang,<sup>a,‡</sup> Xijian Liu,<sup>a,‡,\*</sup> Guoying Deng,<sup>b</sup> Jian Sun,<sup>c</sup> Haikuan Yuan,<sup>a</sup> Qi Li,<sup>d</sup> Qiugeng Wang<sup>b</sup> and Jie Lu<sup>a,\*</sup>

<sup>a</sup> College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China. E-mail: liuxijian@sues.edu.cn; dr.lujie@foxmail.com

<sup>b</sup>Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, NO.650 Xin Songjiang Road, Shanghai, 201620, China.

<sup>c</sup>Department of Clinical Laboratory & Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

<sup>d</sup>Department of Medical Oncology & Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

## 1. Supplementary Figures



Fig. S1 High-magnification TEM images of Se@SiO<sub>2</sub> nanospheres.



**Fig. S2** HAADF-STEM-EDS images of Se@SiO<sub>2</sub>-FA-CuS nanocomposites. The element maps showed the distribution of Se (yellow), Si(green), O (blue), Cu (red) and S (Orange).



**Fig. S3** TEM images of Se@SiO<sub>2</sub>-FA-CuS/DOX nanocomposites in the (a) PBS solution and (b) FBS solution.



**Fig. S4** (a) The size distribution of Se@SiO<sub>2</sub>, porous Se@SiO<sub>2</sub> and Se@SiO<sub>2</sub>-FA-CuS nanocomposites, respectively. (b) The zeta potential of Se@SiO<sub>2</sub>, Se@SiO<sub>2</sub>-NH<sub>2</sub>, Se@SiO<sub>2</sub>-FA, Se@SiO<sub>2</sub>-FA-CuS and Se@SiO<sub>2</sub>-FA-CuS/DOX nanocomposites, respectively.



**Fig. S5** (a) FTIR spectra of Se@SiO<sub>2</sub>, Se@SiO<sub>2</sub>-NH<sub>2</sub>, Se@SiO<sub>2</sub>-FA and Se@SiO<sub>2</sub>-FA-CuS nanocomposites, respectively. (b) XRD pattern of Se@SiO<sub>2</sub>-FA-CuS nanocomposites.



**Fig. S6** UV-Vis-NIR spectra of FA,  $Se@SiO_2$ ,  $Se@SiO_2$ -FA and  $Se@SiO_2$ -FA-CuS nanocomposites, respectively.



Fig. S7 (a)  $N_2$  adsorption-desorption isotherms and (b) pore size distribution of Se@SiO<sub>2</sub>-FA-CuS nanocomposites.



**Fig. S8** UV-Vis-NIR spectra of the DOX before and after 300 s of laser exposure at an output power density of 1.0 W/cm<sup>2</sup>.



**Fig. S9** Cumulative Se release from Se@SiO<sub>2</sub>-FA-CuS nanocomposites at 37 °C in PBS with pH 5.0 and 7.4, respectively.



Fig. S10 (a) Viability of human endothelial cells (normal cells) incubated with DOX, Se@SiO<sub>2</sub>-FA-CuS and Se@SiO<sub>2</sub>-FA-CuS/DOX at various concentrations, respectively. (b)

Viability of HeLa cells incubated for 24 h with Se@SiO<sub>2</sub>-FA-CuS nanocomposites at various concentrations.