Supporting information

Unconventional Gas-Based Bottom-up, Meter-Area-Scale Fabrication of Hydrogen-Bond Free g-CN Nanorod Arrays and Coupling Layers with TiO_{2} toward High-Efficient Photoelectrichemical Performance

Ruyi Wang, ${ }^{\text {a }}$ Huidong Liu, ${ }^{\text {c }}$ Zhongwen Fan, ${ }^{\text {d }}$ Liang Li, ${ }^{\text {a }}$ Yao Cai, ${ }^{c}$ Guangzhou Xu, ${ }^{\text {d }}$ Wenjun Luo, ${ }^{d}$ Bing Yang, ${ }^{* c}$ Yong Zhou, *a,band Zhigang Zou ${ }^{\text {a,b,d }}$
${ }^{a}$ National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Department of Physics,Eco-material and Renewable Energy Research Center (ERERC), Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China.E-mail: zhouyong1999@nju.edu.cn.
${ }^{b}$ KunshanSunlaite New Energy Co.Ltd, Kunshan Innovation Institute of Nanjing University, Kunshan No. 1666, South Zuchongzhi Road, Jiangsu 215347, P. R. China ${ }^{\text {c}}$ School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China. E-mail: toyangbing@163.com.
${ }^{\text {d }}$ College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P. R. China

Figure S1. Surface and cross-sectional morphologies of the g-CN NRs under different targets current (a and b) g-CN-30, (c and d) g-CN-70.

0	C 1s			N 1s	
	$\begin{array}{r} 284.6 \mathrm{eV} \\ \mathrm{sp}^{2} \mathrm{C}=\mathrm{C} \end{array}$	$\begin{aligned} & 286.1 \mathrm{eV} \\ & \mathrm{sp}^{2} \mathrm{C}=\mathrm{N} \end{aligned}$	$\begin{gathered} 288.2 \mathrm{eV} \\ \mathrm{C}-(\mathrm{N})_{3} \end{gathered}$	$\begin{aligned} & 398.7 \mathrm{eV} \\ & \mathrm{sp}^{2} \mathrm{C}=\mathrm{N} \end{aligned}$	$\begin{gathered} 400.1 \mathrm{eV} \\ \mathrm{~N}-(\mathrm{C})_{3} \end{gathered}$
g-CN-30	31.0\%	39.5\%	29.5\%	40.6\%	59.4\%
g-CN-50	29.6\%	41.4\%	29\%	45.2\%	54.8\%
g-CN-70	22.2\%	47.5\%	30.3\%	50.8\%	49.2\%

Figure S2. (a) The survey XPS spectra, and (b) the stoichiometric ratio of various C-N bonds of gCN under different targets current.

Figure S3. Mott-Schottky plots of g-CN NRs under different targets current.

Figure S4. Schematic illustration for the preparation of the $\mathrm{TiO}_{2} @ g-C N N R$.

Figure S5. Surface and cross-sectional morphologies of (a and b) the $\mathrm{TiO}_{2} \mathrm{NR}$ and (c and d) the TiO @g-CN NR.

Figure S6. TEM and HRTEM (inset) images of the pristine TiO_{2} NR.

Figure S7. (a) XRD patterns of FTO , the pristine $\mathrm{TiO}_{2} \mathrm{NR}$, and $\mathrm{TiO}_{2} @ g-C N$ NR. (b) Raman spectra of the pristine $\mathrm{TiO}_{2} \mathrm{NR}$ and $\mathrm{TiO}_{2} @$ g-CN NR, (c) XPS spectrum of the $\mathrm{TiO}_{2} @ g-C N ~ N R$, and (d)high resolution

