Supporting Information

A crystalline and 3D periodically ordered mesoporous quaternary semiconductor for photocatalytic hydrogen generation

Tobias Weller^a, Leonie Deilmann^b, Jana Timm^a, Tobias S. Doerr^{c,d}, Peter A. Beaucage^e, Alexey S. Cherevan^b, Ulrich B. Wiesner^e, Dominik Eder^b, Roland Marschall^{a,*}

^a Institute of Physical Chemistry, Justus-Liebig-University Giessen, Giessen, Germany

^b Institut für Materialchemie, Technische Universität Wien, Vienna, Austria

^c INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany

^d Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany

^e Materials Science & Engineering, Cornell University, Ithaca, NY 14853, USA

* Email: roland.marschall@phys.chemie.uni-giessen.de

Results and Discussion

Figure S1. Two-dimensional SAXS datasets before (left) and after (right) calcination showing several spots indicative of orientation or large grain sizes.

Figure S2. Low magnification SEM image of ISO-derived mesoporous CsTaWO₆

Figure S3. XRPD pattern of the product of Cs_2CO_3 plus TaCl₅ dissolved in EtOH and dried at 80 °C. The bottom shows a reference card for CsCl (JCPDS card no. 02-2173).

Figure S4. *In-situ* XRPD patterns of the dried ISO- Cs_2WOCl_5 composite with reference lines for CsCl (orange, JCPDS card no. 02-1445) and CsTaWO₆ (purple, JCPDS card no. 25-0233), calcined at different temperatures (* assigned to reflections from the sample carrier).

Figure S5. TG and DTG data for ISO-derived mesoporous CsTaWO₆

Figure S6. MS traces of ISO-derived CsTaWO₆, a) water- and chlorine-derived signals; b) large bigger organic fragments from polystyrene (PS); c) smaller organic fragments from polyethylene oxide (PEO) and polyisoprene (PI); and d) other fragments, including CO_2 , which is released up to 500 °C.