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Laurent Legrand1, Thierry Barisien1, ∗, Frédérick Bernardot1, Christophe Testelin1, Emmanuel Lhuillier1,

Alberto Bramati2, Maria Chamarro1
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I Chemical synthesis of CsPbBr3 nanocrystals (NCs)

I.1 Chemicals

Lead (II) bromide (PbBr2 , > 98 %, Aldrich), lead (II) iodide (PbI2 , 99 %, Aldrich), caesium carbonate
(Cs2CO3 , 99 %, Aldrich), lead (II) acetate trihydrate (Pb(CH3COO)2.3H2O, 99 %, Aldrich), oleic acid
(OA, 90 %, Aldrich), 1-octadecene (ODE, 90 %, Aldrich), oleylamine (OLA, 80-90 %, Acros Organics),
methylacetate (CH3COOCH3 , 99 %, Merck-Schuchardt).

I.2 Caesium Oleate precursor

In a three-neck 100 mL flask, 0.8 g of Cs2CO3 are mixed with 2.5 mL of OA and 30 mL of ODE. The flask
is degassed under vacuum for the next 30 minutes at 110 ◦C. The atmosphere is then switched to Ar and
the temperature is either kept at 110 ◦C or raised to 200 ◦C for 10 minutes. At this point the caesium salt
is fully dissolved. The temperature is cooled down below 110 ◦C and the flask is further degassed for 10
minutes. The obtained gel is used as stock solution.

I.3 CsPbBr3 nanocrystals synthesis

In a three-neck flask, we introduced 147 mg of PbBr2 with 10 mL of ODE and degassed the solution for
30 minutes at 110 ◦C. Then we inject 0.5 mL of OA and 0.5 mL of OLA into this degassed reaction mixture.
The atmosphere is switched to Ar and the temperature is raised to 180 ◦C. We then quickly inject 0.8 mL
of caesium oleate. The reaction color turns yellow greenish immediately. We let the reaction occur for
30 seconds and use fresh air to cool the flask. The obtained solution is centrifuged at 6000 rpm for 5
minutes. The supernatant is discarded and the obtained pellet is redispersed in 2 to 3 mL of hexane.
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II Spectroscopic data

II.1 Sample 2 characterization

Fig. S. 1: TEM image (a) and size distribution deduced from TEM image analysis (b), for nanoparticles synthetized
at 110 ◦C, and used to prepare sample 2 (see main text). The scale bar in panel (a) corresponds to 50 nm.
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II.2 Temperature dependence of optical absorption and luminescence

Fig. S. 2: Temperature dependence of the absorption (solid line) and photoluminescence (PL) (dashed line) of sample 1
(synthesis at 180 ◦C).

Fig. S. 3: Evolution of both absorption and emission peak positions (sample 1) with temperature; index 1 is for
the lowest energy absorption peak (1S exciton) and index 2 refers to the structure appearing as a shoulder at higher
energy (2S exciton). Data follow a linear fit in good approximation. Linear coefficients (inset) are given for each peak
with their respective dispersion in brackets. In typical semiconductors, the temperature dependence of the band gap is
fixed by two different contributions: the thermal expansion, which is the weaker contribution, and the electron-phonon
coupling contribution. Huang and Lambrecht have calculated that the bandgap of perovskite materials decreases with
the lattice constant [1] and this is explained by the fact that the gap energy is controlled by the Pb s to Br p covalent
antibonding interaction which governs the valence band width. Then, the temperature diminishing, the lattice constant
reduces and leads to an upper-energy shift of the valence band that pushes up its maximum, thus decreasing the energy
gap. The experimental shifts of figure S. 2 have been fitted with the Varshni relation, [2] which gives the temperature
dependence of the energy gap of bulk semiconductors. In our case, fits lead to very low values of the Debye temperature
(that is not reported here) and quasi-linear dependences are obtained; the slope values (inset) are in good agreement
with previous results in CsPbBr3 [3].
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Fig. S. 4: Temperature dependence of the absorption (solid line) and emission (dashed line) of sample 2 (synthesis
achieved at 110 ◦C).

II.3 Transition energies and energy spacings in excitonic fine structures: summary

Table S. 1: Energy, linewidth and energy spacings, characterizing, at 5 K, experimentally evidenced doublets and
triplets.
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II.4 X-Ray diffractogram

Fig. S. 5: Experimental X-Ray diffractogram of CsPbBr3 nanocrystals (NCs) synthetized at 180 ◦C (blue line) and
computed diffractogram of CsPbBr3 orthorhombic structure (black line) and CsPbBr3 cubic structure (red line).

II.5 Luminescence traces

Fig. S. 6: Typical traces of two single NC emissions: the fine structure is composed either by a triplet (upper panels)
either by a doublet (lower panels). Dashed lines indicate the positions in time of cross sections that are represented
on the right side of the figure. In our experiments, spectral jumps are observed that may shift the lines by an amount
equal to their linewidths.
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II.6 Luminescence decay

Fig. S. 7: Left panel: Emission spectrum corresponding to a low-energy exciton (|Z〉 state of a triplet) recombination;
the red solid line is a Lorentzian fit. Right panel: time-resolved emission of the |Z〉 state whose emission is shown
in left panel. At ≈ 5 K the decay looks monoexponential (given the instrumental dynamics); a lifetime of ≈ 80 ps
is obtained from the fit (red solid line). The experiment was carried out using a streak camera (C5680 model from
Hamamatsu incorporating a M5675 synchroscan unit) synchronized with the pulse train of a frequency doubled pi-
cosecond Ti:Sapphire laser operating at 82 MHz. Note that a decay with similar characteristic constant is found at
5 K for the higher energy |X〉 state. The highest energy line (|Y 〉 state in the text) could not be addressed due to its
much lower intensity. Extended temperature dependent time-resolved studies are still required to gain insights into
the relaxation mechanisms and determine position in energy of the optically inactive state (see, for instance, reference
35 of main text for detailed investigation of bright state - dark state coupling in simple three levels system based
model).
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III Theoretical support: Fine structure of band edge excitons in CsPbBr3

III.1 Band structure

The following analysis is built on the base of analytical developments that can be found in reference 4
with an approach that goes beyond the basic monoelectronic band picture. The exciton fine structure is
described in a Frenkel picture for an uniaxial system (as shown already for 2D and 3D halide perovskites in
references 5 to 7). By comparison to classical semiconductors, the band ordering in lead-halide perovskites
is reversed with a direct band gap at R point for the cubic reference structure [8-12]. The conduction band
is dominated by a giant spin-orbit coupling (SOC) characterized by the constant ∆ > 0 (notation ∆SO is
used in the main text). The CsPbBr3 system can exist in the cubic, tetragonal and orthorhombic phases
with a transition from the orthorhombic to the tetragonal phase around 88 ◦C when increasing temperature.
The cubic phase was found stable at higher temperature (>130 ◦C). In the orthorhombic and tetragonal
structures direct band gap transitions are at the Γ point.
We start from the analytic solutions for the tetragonal phase where we use the |J, Jz〉e basis; we note EV

the energy of the valence band maximum whereas EA, EB and EC are the bottom energies of the different
conduction bands [4, 7]. The value of EB is fixed at zero as in [7], and we note T < 0 the additional
tetragonal crystal field term with respect to the totally symmetric cubic case (T = 0).
In the tetragonal phase, the scheme of levels is then as follows:

The band energies at the Γ point are

EA = −1

2
(T + ∆) − 1

2

√

∆2 + T 2 − 2

3
T∆ (1)

with eigenvectors

|1/2, 1/2〉e = cos θ|Y 1
1 ↓〉 − sin θ|Y 0

1 ↑〉 and |1/2,−1/2〉e = cos θ|Y −1
1 ↑〉 − sin θ|Y 0

1 ↓〉 , (2)

EB = 0 (3)

with eigenvectors
|3/2, 3/2〉e = |Y 1

1 ↑〉 and |3/2,−3/2〉e = |Y −1
1 ↓〉 , (4)

and EC = −1

2
(T + ∆) +

1

2

√

∆2 + T 2 − 2

3
T∆ (5)

with eigenvectors

|3/2, 1/2〉e = sin θ|Y 1
1 ↓〉 + cos θ|Y 0

1 ↑〉 and |3/2,−1/2〉e = sin θ|Y −1
1 ↑〉 + cos θ|Y 0

1 ↓〉 , (6)

where

tan(2θ) =
2
√

2∆

∆ − 3T
(with 0 < θ < π/2) and Y ±1

1 =
∓(X ± iY )√

2
, Y 0

1 = Z. (7)

|X ↓〉, |X ↑〉 , |Y ↓〉, |Y ↑〉, |Z ↓〉 and |Z ↑〉 are the Bloch functions related to the Pb p-orbitals [12].

Note that EA, EB = 0 and EC are energies relative to EB while EI , EII and EIII of the main text
refer to the band-to-band transitions (from valence band). We of course have EIII − EI = EC − EA and
EII − EI = EB − EA.

As shown in [4], when introducing the additional crystal field term ǫ to account for the symmetry lowering in

S7



the orthorhombic structure, the same reduced Hamiltonian is obtained within the |1/2,−1/2〉e, |3/2,−1/2〉e ,
|3/2, 3/2〉e and |1/2, 1/2〉e, |3/2, 1/2〉e , |3/2,−3/2〉e subspaces:

HOrtho =





EA 0 −ǫ cos θ
0 EC −ǫ sin θ

−ǫ cos θ −ǫ sin θ EB = 0



 . (8)

Considering ǫ as a small energetic perturbation by comparison to the relevant energy differences, the first-
order corrections for the eigenvectors as well as the second-order energy corrections can be obtained (the
first-order energy corrections being zero here).
To the first order in ǫ, in the basis {|1/2,±1/2〉e, |3/2,±1/2〉e , |3/2,∓3/2〉e}, the new eigenvectors associated
to the lowest E′

A eigenenergy reads:

|SO±〉e = |1/2,±1/2〉e − ǫ cos θ

EA − EB
|3/2,∓3/2〉e , (9)

where the coefficient ǫ cos θ/(EA − EB) (that quantifies the perturbation) is a crucial ingredient whose
amplitude will determine the exciton fine structure splitting (see below).
For energy second-order corrections, we obtain:

∆EA =
ǫ2 cos2 θ

EA − EB
, (10)

∆EB = ǫ2

(

cos2 θ

EB − EA
+

sin2 θ

EB − EC

)

, (11)

∆EC =
ǫ2 sin2 θ

EC − EB
. (12)

The energy third-order corrections are exactly zero. A graph representing each variation ∆E vs |ǫ| when
appropriate values of θ and EA,B,C are used, is presented at the end of the section (once each parameter is
known); the estimation of the actual ∆Es reveals in particular the validity of the perturbation approach.

Following the development in [4], we write the lowest conduction band states (namely the spin-orbit split-off
states) that tend towards |1/2,±1/2〉e in the limit ǫ → 0 in the Bloch states basis:

{

|SO+〉e = −α|X ↓〉 − β|iY ↓〉 + γ|Z ↑〉
|SO−〉e = +α|X ↑〉 − β|iY ↑〉 + γ|Z ↓〉 .

(13)

Using equation (9) we find, after a change of basis:

α =
cos θ√

2

(

1 +
ǫ

EA − EB

)

, β =
cos θ√

2

(

1 − ǫ

EA − EB

)

, γ = − sin θ, (14)

with (as EB is taken as the origin of energy):

EA − EB = EA − 0 = −
[

1

2
(T + ∆) +

1

2

√

∆2 + T 2 − 2

3
T∆

]

. (15)

III.2 Complementary remark about the determination of ∆ and T parameters

We associate the three peaks located at 2.33 eV, 3.44 eV and 3.68 eV denoted I, II and III in the
absorption spectrum of sample 1 (Figure 1c in main text), to optical transitions between bands A, B and
C. For consistency reasons, several comments should be made:
- First the calculation proposed by Yu [7] applies only for a pure tetragonal phase (with uniaxial symmetry)
whereas it is likely that two structures coexist in our samples (see below and main text). It is indeed now
well documented that a second order phase transition from the tetragonal to the orthorhombic structure
arises around 88 ◦C - by decreasing temperature - while the tetragonal phase exists up to 130 ◦C [13,
14]. XRD measurements point to the orthorhombic structure being the majority (see Figure S. 5), but
micro-photoluminescence studies indeed evidence the presence of both structures, the tetragonal NCs being
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probably stabilized by fast cooling applied to the mixture during the synthesis. Calculations presented in
the previous paragraph show that the position in energy of the A, B and C bands are very slightly impacted
by the further lowering of symmetry that characterizes the transition from the tetragonal phase to the
orthorhombic one. The modification of the crystal field acts as a perturbation, and leads to second-order
corrections of the Ei energies (i = A, B, C) which are in the meV range (see Figure S. 9). To sum up, as far
as the determination of T and ∆ are concerned, there is nearly no incidence in considering the absorption
spectrum as resulting from one particular phase or a mixing.
- Second, excitonic corrections are neglected in the treatment, and the experimental transitions are identified
with the band-to-band transitions. As T and ∆ are extracted from energy differences, only variations in
binding energy of excitons I, II and III may play a role. A manner to estimate the effect of those variations
is to map the T and ∆ values with respect to the Ei energies (i=I, II, III).
By considering an upper excursion u(E) = ± 10 meV for each Ei (that already represents ≈ 25 % of the
binding energy), one obtains weak dispersions on T and ∆ values, which can be written as an uncertainty.
Our measurements provide (with EB set to zero) EA = -1.11 eV and EC = 0.24 eV, leading to the central
values: ∆ = 1.20 eV and T = -0.34 eV. Taking into account u(E) finally leads to:

∆ = 1.20 ± 0.06 eV and T = -0.34 ± 0.05 eV.

III.3 Exciton structure

III.3.1 Bulk excitonic structure [4]

A. Tetragonal crystalline structure: observation of spectral doublets
The Coulomb interaction between an electron from the spin-orbit split-off conduction band and a hole
from the valence band leads to the stabilization of a new excitation (exciton) which energy is lowered
compared to the corresponding band-to-band transition. The coulombic interaction shows through
the Coulomb and exchange integrals that are noted Ub and Jb. In the tetragonal symmetry, the fine
structure consists of a dark optical state and two bright components.
As cos2 θ > 2 sin2 θ (this inequality holds because ∆ > 0 and T < 0), the optically active lower energy
state has an energy EX

2 = 2Jb sin2 θ −Ub (X is for exciton) relative to the gap energy EI ; its emission
is polarized along the c axis of the unit cell. The optically active, higher energy state, has an energy
EX

3 = Jb cos2 θ − Ub relative to the gap energy EI ; it is two-fold degenerate and associated emission
is polarized along the a and b axes. A doublet in emission is thus expected. The energy separation
between the observable components then reads:

∆Edoublet = EX
3 − EX

2 = Jb(1 − 3 sin2 θ) . (16)

B. Orthorhombic crystalline structure
The excitonic fine manifold is composed of four non-degenerate states, the lowest one being opti-
cally inactive. The bright-states energies are expressed in terms of the α, β and γ coefficients (see
equation (14)) and read:

Eα = 2Jbα
2 − Ub emission polarized along X, (17)

Eβ = 2Jbβ
2 − Ub emission polarized along Y, (18)

Eγ = 2Jbγ
2 − Ub emission polarized along Z ≡ c. (19)

Those energies are relative to the gap energy EI + ∆EA. The orthorhombic crystal field thus leads to
the splitting of the higher energy state of energy EX

3 in the tetragonal structure. They correspond to
the levels labeled α and β in the previous equations, however the sign of ǫ remains unknown so that
the absolute value of their energy difference has to be considered. For the sake of clarity and in order
to establish a connection between the tetragonal and orthorhombic excitonic structures, we adopt the
notation EX

3+ and EX
3− for the new energies of the split states, with EX

3+ > EX
3− (see figure S. 8).

From equations (17) and (18) we thus find:

EX
3+ − EX

3− = 4Jb
|ǫ| cos2 θ

EB − EA
. (20)
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Fig. S. 8: Energy labeling used in the text. Note that the diagrams are positioned arbitrarily with EX
2

= Eγ .

The correction to this expression is of order ǫ3. Remarking that, neglecting a second-order term in
ǫ/(EA − EB), the distance in energy

∆E′ = E3 − Eγ = Jb(1 − 3 sin2 θ), (21)

where E3 = (EX
3++EX

3−)/2, it is possible to reach the value of the exchange energy in the orthorhombic
system. Then the absolute value, |ǫ|, can be retrieved from equation (20).

III.3.2 Excitonic structure with cubic confinement

A. General considerations

In the framework of the effective mass approximation, the confined band-edge exciton wavefunctions
are a product of the envelope function and the following Bloch functions [4]:

1√
2

(

|1/2h, 1/2e〉 ∓ | − 1/2h,−1/2e〉
)

, | − 1/2h, 1/2e〉, |1/2h,−1/2e〉, for tetragonal symmetry, (22)

1√
2

(

|1/2h, SO+〉 ∓ | − 1/2h, SO−〉
)

,
1√
2

(

| − 1/2h, SO+〉 ∓ |1/2h, SO−〉
)

, for orthorhombic crystals.

(23)
The envelope function for the electron (hole) in strong confinement regime is the solution of the
following equation:

[ −h̄2

2me(h)
∇2 + V e(h)(−→r e(h))

]

φe(h)(−→r e(h)) = Ee(h)φe(h)(−→r e(h)), (24)

with

V e(h)(−→r e(h)) =

{

0 inside the cube of side d
∞ outside the cube.

(25)

If the origin of the coordinates is placed at the center of the cube, the envelope function reads:

φe(h)
n

1
,n

2
,n

3

=

(

2

d

)3/2

cos
(n

1
πx

1

d

)

cos
(n

2
πx

2

d

)

cos
(n

3
πx

3

d

)

. (26)

For the lowest confined exciton, n1 = 1, n2 = 1, n3 = 1 and the confinement energy is

E1,1,1 =
3h̄2π2

2m∗

e(h)d
2
. (27)

When compared to the bulk situation, all band-edge excitonic transitions will thus be increased by
the amount E1,1,1.
We also expect that Coulomb energy and electron-hole exchange energy are enhanced by confinement
and more precisely are a function of the size, d. Nevertheless, the exciton electronic structure should
not be very much affected by confinement if the NC shape does not impose a new symmetry to the
electronic structure. This allows to use formulae (16), (20) and (21) where we replace Jb (and Ub) by
J (and U respectively) which are now characteristic of the confined system.
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B. Determination of the electron-hole exchange energy and crystal field term

a. For the tetragonal case, ∆ = 1.20 ± 0.06 eV and T= -0.34 ± 0.05 eV (see paragraph above) lead
to sin2 θ = 0.23. From the mean value ∆Edoublet = 1.0 ± 0.2 meV and neglecting the uncertainty
on the θ value, we finally extract J = 3.2 ± 0.6 meV in tetragonal NCs.

b. For the orthorhombic case, our measurements provide ∆E′ = 0.75 ± 0.22 meV as well as
EX

3+ − EX
3− = 0.55 ± 0.20 meV, that lead to J = 2.4 ± 0.7 meV and to a value |ǫ| = 0.08 ± 0.04 eV.

The dark state is then expected at 2Jγ2 ≈ 1.1 meV below the lowest bright state in orthorhom-
bic NCs. Similar value is found in the tetragonal structure, where their energy separation is
2J sin2 θ ≈ 1.5 meV.

Finally, the figure S. 9 shows the variations, as a function of |ǫ|, of the second-order corrections that affect the
tetragonal band energies. For |ǫ| ≈ 0.08 eV they are all in the meV range, so that the values of T and ∆ are
not affected by the actual nature of the NCs phase probed in absorption. We also have |ǫ| cos θ ≪ EB −EA

and |ǫ| sin θ ≪ EC −EB ; in this context, the perturbation approach which is the base for our developments
is mathematically justified.
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Fig. S. 9: Variations with |ǫ| of the band-edge energies in the orthorhombic crystal. The variations are obtained through
a second-order perturbation calculation with respect to ǫ. The vertical dashed line marks the value |ǫ| ≈ 0.08 eV
determined from experimental values of the transitions (extracted from the absorption spectrum). Corresponding
energy variations are ∆EA ≈ -4.4 meV, ∆EB ≈ -1.7 meV and ∆EC ≈ +6.0 meV.
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