### **Thermal Conductivity of Group VA Puckered Monolayer Structures**

Tuğbey Kocabaş<sup>1</sup>, Deniz Çakır<sup>2</sup>, Oğuz Gülseren<sup>3</sup>, Feridun Ay<sup>4</sup>, Nihan Kosku Perkgöz<sup>4</sup>, Cem Sevik<sup>5</sup>

<sup>1</sup>Department of Advanced Technologies, Graduate School of Sciences, Anadolu University, Eskisehir, TR 26555, Turkey, <sup>2</sup>Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, USA, <sup>3</sup>Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey, <sup>4</sup>Department of Electrical and Electronics Engineering, Faculty of Engineering, Anadolu University, Eskisehir, TR 26555, Turkey, <sup>5</sup>Department of Mechanical Engineering, Faculty of Engineering, Anadolu University, Eskisehir, TR 26555, Turkey

### 1. Structure



**Figure 1:** Schematical representation of Group VI compound semiconductors. (a) Represents pristine P, As, Sb and Bi structures, (b) represents  $X_{0.5}Y_{0.5}$ , (X = P, As, Sb, Bi, Y = P, As, Sb, Bi, and X  $\neq$  Y) structures with space group symmetry 31, (c) represents  $X_{0.5}Y_{0.5}$ , (X = P, As, Sb, Bi, Y = P, As, Sb, Bi, and X  $\neq$  Y) structures with space group symmetry 28, (d) represents  $X_{0.5}Y_{0.5}$ , (X = P, As, Sb, Bi, Y = P, As, Sb, Bi, and X  $\neq$  Y) structures with space group symmetry 10, and (e, f) represents  $X_{0.25}Y_{0.75}$ , (X = P, As, Sb, Bi, Y = P, As, Sb, Bi, and X  $\neq$  Y) structures with space with space group symmetry 6.

## 2. Phonon Dispersions

## a. Pristine Structure



**Figure 2:** Phonon dispersion curves together with group velocities in km/s (depicted as line color) along the high-symmetry directions of the first Brillouin zone. (a) P, (b) As, (c) Sb, and (d) Bi.

# b. $X_2Y_2$ , (X = P, As, Sb, Bi, Y = P, As, Sb, Bi, and X $\neq$ Y) Compound Structures





**Figure 3:** Phonon dispersion curves together with group velocities in km/s (depicted as line color) along the high-symmetry directions of the first Brillouin zone. (n) and (o) are depicted as examples of unstable structures.



c.  $X_1Y_3$ , (X = P, As, Sb Y = P, As, Sb and X  $\neq$  Y) Compound Structures

Figure 4: Phonon dispersion curves together with group velocities in km/s (depicted as line color) along the high-symmetry directions of the first Brillouin zone.

## 3. Debye Temperature

|                                 | Space | Mass     | $\theta_D$ | δ      |
|---------------------------------|-------|----------|------------|--------|
|                                 | Group | (au)     | (K)        | (Å)    |
| Р                               | 53    | 30.9730  | 206        | 1.9530 |
| $P_3As_1$                       | 6     | 41.4602  | 165        | 1.9926 |
| PAs                             | 31    | 51.9473  | 134        | 2.0271 |
| PAs                             | 28    | 51.9473  | 130        | 2.0400 |
| PAs                             | 10    | 51.9473  | 147        | 2.0229 |
| $P_3Sb_1$                       | 6     | 53.6698  | 132        | 2.0491 |
| P <sub>1</sub> As <sub>3</sub>  | 6     | 62.4345  | 118        | 2.0649 |
| As                              | 53    | 72.9216  | 101        | 2.0951 |
| PSb                             | 31    | 76.3665  | 103        | 2.0791 |
| PSb                             | 10    | 76.3665  | 98         | 2.1008 |
| As <sub>3</sub> Sb <sub>1</sub> | 6     | 85.1312  | 88         | 2.1431 |
| AsSb                            | 31    | 97.3408  | 83         | 2.1599 |
| AsSb                            | 10    | 97.3408  | 80         | 2.1877 |
| PBi                             | 31    | 119.9765 | 70         | 2.1406 |
| PBi                             | 10    | 119.9765 | 73         | 2.1284 |
| Sb                              | 31    | 121.7600 | 74         | 2.2727 |
| AsBi                            | 31    | 140.9508 | 65         | 2.2074 |
| AsBi                            | 10    | 140.9508 | 61         | 2.2153 |
| SbBi                            | 31    | 165.3700 | 56         | 2.3124 |
| SbBi                            | 10    | 165.3700 | 51         | 2.3513 |
| Bi                              | 31    | 208.9800 | 50         | 2.3533 |

TABLE I: The calculated average effective masses of the structures, Debye temperature, and  $\delta$ .

## 4. Graphene



**Figure 5:** (a) The calculated Thermal Conductivity for Graphene. (b) Calculated thermal conductivity of individual modes. This data is obtained by using the following computational parameters: PBE Pseudopotential, 500 eV energy cutoff, and 6x6x1 k-point grid for all the simulations, 6x6x1 super cell structure for the 2nd and 3rd order force constant calculations, maximum 9 nearest neighbour interactions for the 3rd order force constant calculations, and 100x100x1 q-point grid for the thermal conductivity calculations.

#### 5. Room Temperature Thermal conductivity

### a. Pristine Structures

**TABLE II:** The calculated room temperature  $\kappa$  of the structures, together with the results reported in the literature. The values reported by Zheng *et. al.* are modified by the out of plane distance used in our study. G. Zheng, Y. Jia, S. Gao, and S.-H. Ke, Phys. Rev. B 94, 155448 (2016).

| Structure | Zigzag    |                      | Armchair  |              |  |
|-----------|-----------|----------------------|-----------|--------------|--|
|           | This Work | Zheng <i>et al</i> . | This Work | Zheng et al. |  |
| Р         | 109.6     | 109.9                | 21.0      | 23.5         |  |
| As        | 20.0      | 26.8                 | 5.6       | 5.7          |  |
| Sb        | 9.5       | 9.7                  | 5.3       | 4.7          |  |
| Bi        | 4.1       |                      | 2.0       |              |  |

### b. Binary Compounds: XY, $(X = P, As, Sb, Bi, Y = P, As, Sb, Bi, and X \neq Y)$ structures

| Structure | Space Group | Zigzag   | Armchair |  |  |  |
|-----------|-------------|----------|----------|--|--|--|
| PAs       | 31          | 38.6     | 8.4      |  |  |  |
| PAs       | 28          | 45.7     | 7.9      |  |  |  |
| PAs       | 10          | 41.2     | 5.9      |  |  |  |
|           |             |          |          |  |  |  |
| PSb       | 31          | 26.1     | 14.3     |  |  |  |
| PSb       | 28          | UNSTABLE |          |  |  |  |
| PSb       | 10          | 13.1     | 3.1      |  |  |  |
|           |             |          |          |  |  |  |
| PBi       | 31          | 5.7      | 4.9      |  |  |  |
| PBi       | 28          | UNSTABLE |          |  |  |  |
| PBi       | 10          | 6.0      | 1.5      |  |  |  |
|           |             |          |          |  |  |  |
| AsSb      | 31          | 9.5      | 4.4      |  |  |  |
| AsSb      | 28          | UNSTABLE |          |  |  |  |
| AsSb      | 10          | 8.9      | 2.1      |  |  |  |
|           |             |          |          |  |  |  |
| AsBi      | 31          | 8.0 4.3  |          |  |  |  |
| AsBi      | 28          | UNSTABLE |          |  |  |  |

**TABLE III:** The calculated room temperature  $\kappa$  of the 50% compound structures.

| AsBi | 10 | 8.8      | 3.8 |  |  |
|------|----|----------|-----|--|--|
|      |    |          |     |  |  |
| SbBi | 31 | 6.1      | 2.5 |  |  |
| SbBi | 28 | UNSTABLE |     |  |  |
| SbBi | 10 | 7.3      | 3.6 |  |  |

## c. One-Third Compounds: XY, $(X = P, As, Sb, Bi, Y = P, As, Sb, Bi, and X \neq Y)$ structures

TABLE IV: The calculated room temperature  $\kappa$  of the 25% compound structures.

| Structure                       | Space Group | Zigzag | Armchair |
|---------------------------------|-------------|--------|----------|
| P <sub>3</sub> As <sub>1</sub>  | 6           | 64.1   | 11.4     |
| P <sub>3</sub> Sb <sub>1</sub>  | 6           | 31.4   | 3.5      |
| P <sub>1</sub> As <sub>3</sub>  | 6           | 25.5   | 4.6      |
| As <sub>3</sub> Sb <sub>1</sub> | 6           | 11.0   | 2.4      |

## 6. Electronic Structure

## a. Pristine Structures



**Figure 6:** Electronic band structure along the high-symmetry directions of the first Brillouin zone. (a) P, (b) As, (c) Sb, and (d) Bi.







Figure 7: Electronic band structure of 50% compounds along the high-symmetry directions of the first Brillouin zone.

# c. $X_1Y_3$ , (X = P, As, Sb Y = P, As, Sb and X $\neq$ Y) Compound Structures



Figure 8: Electronic band structure of 25% compounds along the high-symmetry directions of the first Brillouin zone.

# 7. Structural Properties

| $\mathcal{B}^{n}\mathbf{F}^{n}$ |       | ,            |                       |                  |                  | 4                | <b></b>           |           |
|---------------------------------|-------|--------------|-----------------------|------------------|------------------|------------------|-------------------|-----------|
|                                 | Space | $a_{\theta}$ | <b>D</b> <sub>0</sub> | $A_1$            | $A_2$            | $A_3$            | E <sub>GAP</sub>  | Cohesive  |
|                                 | Group | (A)          | (A)                   | ( <del>0</del> ) | ( <del>O</del> ) | ( <del>O</del> ) | (eV)              | Energy *  |
|                                 |       |              |                       |                  |                  |                  |                   | (eV/Atom) |
| Р                               | 38    | 3.29         | 4.62                  | 104.16           | 104.16           | 95.92            | 0.91 Г⇒Г          | -3.447    |
| As                              | 38    | 3.68         | 4.76                  | 100.64           | 100.64           | 94.5             | 0.79 Г-Ү⇒Г        | -2.926    |
| Sb                              | 38    | 4.35         | 4.74                  | 102.56           | 88.61            | 95.33            | 0.19 Г-Ү⇒Г-Ү      | -2.613    |
| Bi                              | 38    | 4.56         | 4.84                  | 103.74           | 85.23            | 93.97            | 0.31 Г-Ү⇒Г-Ү      | -2.718    |
|                                 |       |              |                       |                  |                  |                  |                   |           |
| PAs                             | 31    | 3.50         | 4.69                  | 100.22           | 104.09           | 94.92            | 0.90 Г⇒Г          | -3.153    |
| PAs                             | 28    | 3.46         | 4.81                  | 103.72           | 102.49           | 99.39            | 0.89 Г⇒Г          | -3.155    |
| PAs                             | 10    | 3.50         | 4.68                  | 100.42           | 100.42           | 94.84            | 0.96 Г⇒Г          | -3.173    |
| P <sub>3</sub> As <sub>1</sub>  | 6     | 3.39         | 4.68                  | 103.28           | 101.64           | 92.47            | 0.92 Г⇒Г          | -3.307    |
| P <sub>1</sub> As <sub>3</sub>  | 6     | 3.58         | 4.76                  | 100.03           | 101.65           | 92.35            | 0.92 Г⇒Г          | -3.034    |
|                                 |       |              |                       |                  |                  |                  |                   |           |
| PSb                             | 31    | 3.90         | 4.42                  | 104.94           | 89.91            | 96.43            | 0.51 Г-Ү ⇒Г       | -2.967    |
| PSb                             | 10    | 3.85         | 4.58                  | 93.75            | 93.76            | 95.15            | 0.34 Г-Ү⇒Г        | -2.990    |
| $P_3Sb_1$                       | 6     | 3.54         | 4.47                  | 102.48           | 96.94            | 88.29            | 0.82 Γ <b>⇒</b> Χ | -3.166    |
| P <sub>1</sub> Sb <sub>3</sub>  | 6     | 4.07         | 4.85                  | 103.98           | 96.68            | 100.14           | 0.31 Г-Ү →Г-Ү     | -2.750    |
|                                 |       |              |                       |                  |                  |                  |                   |           |
| PBi                             | 31    | 4.10         | 4.69                  | 100.87           | 91.42            | 96.77            | 0.58 Г-Ү⇒Г        | -2.846    |
| PBi                             | 10    | 4.03         | 4.48                  | 101.87           | 101.87           | 95.24            | 0.09 Г-Ү ⇒Г-Ү     | -2.889    |
|                                 |       |              |                       |                  |                  |                  |                   |           |
| AsSb                            | 31    | 4.05         | 4.60                  | 103.14           | 90.97            | 95.78            | 0.24 Г-Ү⇒Г-Ү      | -2.774    |
| AsSb                            | 10    | 4.02         | 4.75                  | 95.71            | 95.72            | 95.14            | 0.28 Г-Ү⇒Г-Ү      | -2.767    |
| As <sub>3</sub> Sb <sub>1</sub> | 6     | 3.85         | 4.77                  | 100.6            | 95.47            | 91.61            | 0.52 Г-Ү ⇒ Г-Ү    | -2.834    |
| As <sub>1</sub> Sb <sub>3</sub> | 6     | 4.20         | 4.73                  | 100.17           | 89.76            | 92.30            | 0.07 Г-Ү⇒Г-Ү      | -2.679    |
|                                 |       |              |                       |                  |                  |                  |                   |           |
| AsBi                            | 31    | 4.23         | 4.60                  | 91.65            | 99.68            | 96.13            | 0.53 Г-Ү ⇒ Г-Ү    | -2.686    |
| AsBi                            | 10    | 4.19         | 4.67                  | 99.57            | 99.57            | 95.49            | 0.13 Г-Ү ⇒ Г-Ү    | -2.679    |
|                                 |       |              |                       |                  |                  |                  |                   |           |
| SbBi                            | 31    | 4.47         | 4.78                  | 102.56           | 87.08            | 94.74            | 0.46 Г-Ү ⇒ Г-Ү    | -2.531    |
| SbBi                            | 10    | 4.48         | 4.93                  | 96.06            | 93.34            | 95.35            | 0.27 Г-Ү ⇒ Г-Ү    | -2.530    |

**TABLE V:** The calculated lattice constants,  $a_0$  and  $b_0$ , structural angles,  $A_1$ ,  $A_2$ , and  $A_3$ , electronic band gap,  $E_{GAP}$  (Indirect gaps are depicted as bold face), and Cohesive Energy.



\* The cohesive energies are calculated by subtracting the individual atom energies from total energy of the system.

## 8. Mean Free Paths



**Figure 9:** Calculated cumulative thermal conductivity of pristine structures as a function of mean free path at T=300K along the (a) zigzag and (b) armchair directions



**Figure 10:** Calculated cumulative thermal conductivity of 50% compound structures as a function of mean free path at T=300K along the (a) zigzag and (b) armchair directions



**Figure 11:** Calculated cumulative thermal conductivity of 25% compound structures as a function of mean free path at T=300K along the (a) zigzag and (b) armchair directions

### 9. Iterative Method versus RTA

#### a. Pristine Structures



**Figure 9:** Thermal conductivity of pristine structures as a function of temperature along the (a) zigzag and (b) armchair direction calculated by the self-consistent solution of Peierls-BTE and ratio of the self consistent ( $\kappa$ ) and zeroth order (corresponding to the  $\kappa_{RTA}$ ) solutions are also depicted for (c) zigzag and (d) armchair directions.



**Figure 10:** Thermal conductivity of 50% compound structures as a function of temperature along the (a) zigzag and (b) armchair direction calculated by the self-consistent solution of Peierls-BTE and ratio of the self consistent ( $\kappa$ ) and zeroth order (corresponding to the  $\kappa_{RTA}$ ) solutions are also depicted for (c) zigzag and (d) armchair directions.



**Figure 11:** Thermal conductivity of 25% compound structures as a function of temperature along the (a) zigzag and (b) armchair direction calculated by the self-consistent solution of Peierls-BTE and ratio of the self consistent ( $\kappa$ ) and zeroth order (corresponding to the  $\kappa_{RTA}$ ) solutions are also depicted for (c) zigzag and (d) armchair directions.

## 10. Thermal Conductivity of Each Band

Here, each band correspond to the phonon modes, imply sorted based on the ascending order of the frequency.

![](_page_11_Figure_5.jpeg)

### a. Pristine Structure

![](_page_12_Figure_0.jpeg)

**Figure 12:** Normalized contribution of acoustic and low frequency optical phonon branches to the thermal conductivity as a function of temperature along the zigzag and armchair directions of pristine structures.

![](_page_12_Figure_2.jpeg)

![](_page_12_Figure_3.jpeg)

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

Figure 13: Normalized contribution of acoustic and low frequency optical phonon branches to the thermal conductivity as a function of temperature along the zigzag and armchair directions of 50% compound structures.

![](_page_16_Figure_0.jpeg)

c.  $X_1Y_3$ , (X = P, As, Sb Y = P, As, Sb and X  $\neq$  Y) Compound Structures

Figure 14: Normalized contribution of acoustic and low frequency optical phonon branches to the thermal conductivity as a function of temperature along the zigzag and armchair directions of 25% compound structures.

### **10. Relaxations Times**

Here, each band correspond to the phonon modes, imply sorted based on the ascending order of the frequency.

![](_page_17_Figure_2.jpeg)

### a. Pristine Structures

**Figure 18:** Relaxation time of phonon modes of pristine structures as a function of frequency for acoustic and low frequency optical phonons of pristine structures at T=300K

### b. $X_2Y_2$ , (X = P, As, Sb, Bi, Y = P, As, Sb, Bi, and X $\neq$ Y) Compound Structures

![](_page_17_Figure_6.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_19_Figure_0.jpeg)

**Figure 19:** Relaxation time of phonon modes of 50% compound structures as a function of frequency for acoustic and low frequency optical phonons of pristine structures at T=300K

![](_page_20_Figure_0.jpeg)

c.  $X_1Y_3$ , (X = P, As, Sb Y = P, As, Sb and X  $\neq$  Y) Compound Structures

**Figure 20:** Relaxation time of phonon modes of 25% compound structures as a function of frequency for acoustic and low frequency optical phonons of pristine structures at T=300K

![](_page_20_Figure_3.jpeg)

## 11. Convergence of Thermal Conductivity with q-grid

Figure 21: Convergence of calculated thermal conductivity of Phosphorene with q-grid.