Supporting Information for

Interaction of Spin-Labeled HPMA-based Nanoparticles with Human Blood Plasma Proteins -

Introduction of protein-corona free polymer nanomedicines

Damir Klepac, Hana Kostková, Svetlana Petrova, Petr Chytil, Tomáš Etrych, Sami Kereïche, Ivan Raška, David A. Weitz, and Sergey K. Filippov

Fig. S1 Distribution functions of hydrodynamic radii for RNP-C and RNP-Ss in PBS buffer at 37 °C.

Fig. S2 Distribution functions of hydrodynamic radii for (a) RNP-C and (b) RNP-Ss in PBS buffer with and without SDS ($c = 2 \text{ mg mL}^{-1}$) at 37 °C.

Fig. S3 Cryo-TEM image of RNP-Ss in the presence of human plasma.

Fig. S4 Cryo-TEM image of RNP-Ss in the presence of LDL.

Fig. S5 Cryo-TEM image of RNP-Ss in the presence of HSA.

Fig. S6 Cryo-TEM image of RNP-C in the presence of HSA.

Parameter	TEMPONE	RNP-S1	RNP-Ss	RNP-C
g _{xx}	2.008784	2.008784	2.008784	2.008784
$g_{ m yy}$	2.006100	2.005900	2.005900	2.005900
g _{zz}	2.002330	2.002330	2.002330	2.002330
A _{xx}	5.54	6.58	8.87	8.23
A _{yy}	5.90	4.00	4.00	3.95
A _{zz}	36.90	38.27	38.27	35.71
<i>W</i> ₁	0.368	0.460	1.250	2.202
$\beta_{\rm D}$		66.08	61.80	63.75
$R_{\rm prp}$ / s ⁻¹	8.23 × 10 ⁹	4.16×10^{8}	1.03×10^{8}	1.11×10^{7}
$R_{\rm pll}$ / s ⁻¹	3.60×10^9	3.18 × 10 ⁹	1.32×10^{9}	6.59 × 10 ⁸
$\tau_{\rm R}$ / s	2.67 × 10 ⁻¹¹	2.03×10^{-10}	6.90 × 10 ⁻¹⁰	3.84×10^{-9}

Table S1 The fitting parameters used for the EPR spectra simulations and the calculated rotational correlation times for TEMPONE, RNP-S1, RNP-Ss, and RNP-C in PBS buffer at 37 °C

 g_{xx} , g_{yy} and g_{zz} are the Cartesian components of the **g** tensor for the electronic Zeeman interaction, A_{xx} , A_{yy} and A_{zz} are the Cartesian components of the electron/nuclear hyperfine tensor in gauss, W_1 represents the isotropic spherical component of the inhomogeneous line-broadening tensor, R_{prp} and R_{pll} are the axial components of the rotational diffusion tensor in s⁻¹, and β_D is the diffusion tilt angle in degrees.

Table S2 The fitting parameters used for the EPR spectra simulations and the calculated rotational correlation times for RNP-C and RNP-Ss in PBS buffer with and without SDS (c = 2 mg mL⁻¹) at 37 °C

Parameter	RNP-C	RNP-C + SDS	RNP-Ss	RNP-Ss + SDS
g _{xx}	2.008784	2.008784	2.008784	2.008784
$g_{ m yy}$	2.005900	2.005900	2.005900	2.005900
g _{zz}	2.002330	2.002330	2.002330	2.002330
A _{xx}	8.23	8.23	8.87	8.87
A _{yy}	3.95	5.30	4.00	4.00
A _{zz}	35.71	35.71	38.27	38.27
<i>W</i> ₁	2.202	1.019	1.250	1.130
$\beta_{\rm D}$	63.75	65.08	61.80	66.73
$R_{\rm prp}$ / s ⁻¹	1.11×10^{7}	3.30×10^{8}	1.03 × 10 ⁸	9.41 × 10 ⁷
$R_{\rm pll}$ / s ⁻¹	6.59×10^{8}	7.08×10^{8}	1.32 × 10 ⁹	1.09 × 10 ⁹
$ au_{ m R}$ / s	3.84 × 10 ⁻⁹	3.91 × 10 ⁻¹⁰	6.90 × 10 ⁻¹⁰	7.82 × 10 ⁻¹⁰

	SDS concentration (mg mL ⁻¹)										
Parameter	0.00	0.05	0.10	0.20	0.30	0.40	0.50	1.00	2.00		
g _{xx}	2.008784	2.008784	2.008784	2.008784	2.008784	2.008784	2.008784	2.008784	2.008784		
$g_{ m yy}$	2.005900	2.005900	2.005900	2.005900	2.005900	2.005900	2.005900	2.005900	2.005900		
g _{zz}	2.002330	2.002330	2.002330	2.002330	2.002330	2.002330	2.002330	2.002330	2.002330		
A _{xx}	8.23	8.23	8.23	8.23	8.23	8.23	7.29	8.23	8.23		
A _{yy}	3.95	3.95	3.95	3.95	3.95	3.95	5.35	5.30	5.30		
Azz	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71	35.71		
W ₁	2.202	1.496	1.548	1.496	1.519	1.480	1.322	1.113	1.019		
$\beta_{ m D}$	63.75	63.06	65.12	66.45	68.63	69.75	63.17	65.39	65.08		
<i>R</i> _{prp} / s ⁻¹	1.11 × 10 ⁷	1.32×10^{7}	1.98 × 10 ⁷	2.63 × 10 ⁷	3.54×10^{7}	4.31 × 10 ⁷	6.06 × 10 ⁷	1.24 × 10 ⁸	3.30 × 10 ⁸		
$R_{\rm pll} /{\rm s}^{-1}$	6.59 × 10 ⁸	7.07 × 10 ⁸	8.30 × 10 ⁸	1.11 × 10 ⁹	1.46 × 10 ⁹	1.81 × 10 ⁹	1.03 × 10 ⁹	1.26 × 10 ⁹	7.08×10^{8}		
$ au_{ m R}$ / s	3.84 × 10-9	3.36 × 10-9	2.42 × 10-9	1.82 × 10-9	1.36 × 10-9	1.11 × 10-9	1.07 × 10-9	6.20 × 10 ⁻¹⁰	3.91 × 10 ⁻¹⁰		

Table S3 The fitting parameters used for the EPR spectra simulations and the calculatedrotational correlation times for RNP-C in PBS buffer as a function of SDS concentration at 37 °C

Table	S4	The	fitting	param	neters	used	for	the	EPR	spectra	simulations	and	the	calculated
rotation	nal c	correl	ation ti	mes fo	or RNI	P-C in	PB	S bu	ffer ai	nd in the	presence of	f diffe	erent	proteins at
37 °C,	PBS	5												

Parameter	PBS	HSA	BSA	HDL	LDL	IgG	plasma
g _{xx}	2.008784	2.008784	2.008784	2.008784	2.008784	2.008784	2.008784
$g_{ m yy}$	2.005900	2.005900	2.005900	2.005900	2.005900	2.005900	2.005900
g _{zz}	2.002330	2.002330	2.002330	2.002330	2.002330	2.002330	2.002330
A _{xx}	8.23	8.23	8.23	8.23	8.23	8.23	8.23
A _{yy}	3.95	3.95	3.95	3.95	3.95	3.95	3.95
A _{zz}	35.71	35.71	35.71	35.71	35.71	35.71	35.71
<i>W</i> ₁	2.202	2.263	2.035	2.114	2.180	2.005	2.157
$\beta_{\rm D}$	63.75	65.41	64.85	65.31	64.87	65.16	64.60
$R_{\rm prp}$ / s ⁻¹	1.11×10^{7}	1.39 × 10 ⁷	1.28×10^{7}	1.27×10^{7}	1.28×10^{7}	1.29×10^{7}	1.17×10^{7}
$R_{\rm pll}$ / s ⁻¹	6.59×10^{8}	5.03×10^{8}	5.51×10^{8}	5.40×10^{8}	5.62×10^{8}	5.10×10^{8}	5.76×10^{8}
$\tau_{\rm R}$ / s	3.84 × 10 ⁻⁹	3.63 × 10 ⁻⁹	3.72 × 10 ⁻⁹	3.76 × 10 ⁻⁹	3.68 × 10-9	3.79 × 10 ⁻⁹	3.88 × 10-9

Table S5 The fitting parameters used for the EPR spectra simulations and the calculated rotational correlation times for RNP-Ss in PBS buffer and in the presence of different proteins at 37 °C, PBS

Parameter	PBS	HSA	BSA	HDL	LDL	IgG	plasma
g _{xx}	2.008784	2.008784	2.008784	2.008784	2.008784	2.008784	2.008784
$g_{ m yy}$	2.005900	2.005900	2.005900	2.005900	2.005900	2.005900	2.005900
g _{zz}	2.002330	2.002330	2.002330	2.002330	2.002330	2.002330	2.002330
A _{xx}	8.87	8.87	8.87	8.87	8.87	8.87	8.87
A _{yy}	4.00	4.00	4.00	4.00	4.00	4.00	4.00
A _{zz}	38.27	38.27	38.27	38.27	38.27	38.27	38.27
<i>W</i> ₁	1.250	1.166	1.201	1.163	1.249	1.260	1.161
$\beta_{\rm D}$	61.80	62.74	63.71	63.98	65.20	65.74	62.13
$R_{\rm prp}$ / s ⁻¹	1.03×10^{8}	9.75×10^{7}	1.04×10^{8}	1.18×10^{8}	8.59 × 10 ⁷	1.07×10^{8}	8.87×10^{7}
$R_{\rm pll}$ / s ⁻¹	1.32×10^{9}	1.26×10^{9}	1.28×10^{9}	1.17×10^{9}	1.57×10^{9}	1.36 × 10 ⁹	1.35×10^{9}
$ au_{ m R}$ / s	6.90 × 10 ⁻¹⁰	7.28 × 10 ⁻¹⁰	6.93 × 10 ⁻¹⁰	6.57 × 10 ⁻¹⁰	7.37 × 10 ⁻¹⁰	6.67 × 10 ⁻¹⁰	7.58 × 10 ⁻¹⁰

Basic characterization techniques:

Determination of molecular weights: The molecular weights of HPMA copolymers bearing cholesterol were determined using a Shimadzu HPLC system equipped with a gel permeation chromatography (GPC) column (TSKgel G3000SWxl, 300×7.8 mm; 5μ m), PDA, refractive index (RI) Optilab-rEX and multiangle light scattering (MALS) (DAWN HELEOS II, Wyatt Technology Co., USA) detectors using a methanol:sodium acetate buffer (0.3 M; pH 6.5) mixture (80:20 vol%; flow rate 0.5 mL·min⁻¹).

The molecular weight and polydispersity index of synthesized PCL-*b*-PHPMA diblock copolymers were determined by GPC. The analyses were performed using an SDS 150 pump (Watrex, USA), an autosampler Midas (Spark Holland) evaporative light scattering PL ELS 1000 (Polymer Laboratories), and UV (Watrex UVD 250) detectors. The separation system consisted of two PLgel MIXED-BLS columns (Polymer Laboratories) and was calibrated based on polystyrene (PSS, Germany). DMF was used as a mobile phase at a flow rate of 0.5 mL min⁻¹ at 25 °C. Data collection and processing were performed using TriSEC (Viscotek Comp) software.

UV-Vis spectrophotometry: The content of the TT groups in the polymer precursor was determined by UV/Vis spectrophotometry in methanol using the molar absorption coefficient ε_{305} = 10300 L·mol⁻¹·cm⁻¹ estimated for MA- β A-TT. The content of hydrazide-terminated side chains in the polymer precursor was determined by a modified TNBSA assay, as previously described.¹ The molar absorption coefficient ε_{500} = 17200 L·mol⁻¹·cm⁻¹ (λ = 500 nm) estimated for the model reaction of MA-Ahx-NHNH₂ with TNBSA was used.

Nuclear magnetic resonance (NMR): The content of cholesterol bound to polymer carriers was determined by ¹H-NMR (Bruker spectrometer, 300 MHz). Integral intensities from ¹H-NMR spectrum in (CD₃)₂SO were compared: δ 5.32 t, 1H (C=CH); δ 3.68 br, 1H (C<u>H</u>-OH) or δ 4.70 br, 1H (CH-O<u>H</u>).

REFERENCES

1 T. Etrych, M. Jelínková, B. Říhová and K. Ulbrich, J. Controlled Release, 2001, 73, 89-102.