Electronic Supplementary Information for

High-Performance Deep Ultraviolet Photodetectors Based on Few-Layer Hexagonal Boron Nitride

Heng Liu,^{a,b} Junhua Meng,^{a,b} Xingwang Zhang,^{*a,b} Yanan Chen,^{a,b} Zhigang Yin,^{a,b} Denggui Wang,^{a,b} Ye Wang,^{a,b} Jingbi You,^{a,b} Menglei Gao,^{a,b} and Peng Jin^{a,b}

^{a.} Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China

^{b.} College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

* E-mail: <u>xwzhang@semi.ac.cn</u>

Figure S1. The SAED patterns recorded at different locations on the same h-BN domain have identical orientation, implying the single-crystal nature of h-BN domain.

Figure S2. Schematic diagram of the h-BN transfer by a rosin-assisted wet-transfer method.

Figure S3. The EDX spectroscopy elemental mappings of B and N for the h-BN layer transferred onto a SiO_2/Si substrate.

Figure S4. Optical micrograph of the h-BN DUV photodetector.

Figure S5. The I-V curves of h-BN photodetectors measured in the dark. The devices were fabricated from the h-BN layers grown at different temperatures.

Materials	Cut off	Dark current	Responsivity $(\mathbf{m} \mathbf{A} / \mathbf{W})$	On/off ratio	Ref.
Diamond	225	1.1 pA/5 V	48	10 ⁴	1
β-Ga ₂ O ₃	250	1200 pA/10 V	37	10 ³	2
Mg _x Zn _{1-x} O	273	20 pA/15 V	0.1	104	3
AlN	240	0.1 pA/100 V	400	/	4
SiC	310	100 pA/100 V	70	103	5
h-BN	250	200 nA/4 V	1.5	<5	6
h-BN	250	4 nA/4 V	0.09	/	7
h-BN	225	20 pA/20 V	0.1	10 ³	This Work

Table S1. Comparison of the photoresponse parameters between the h-BN photodetectors and DUV photodetectors fabricated from other wide band gap semiconductors.

- A. BenMoussa, A. Soltani, K. Haenen, U. Kroth, V. Mortet, H. A. Barkad, D. Bolsee, C. Hermans, M. Richter, J. C. De Jaeger and J. F. Hochedez, *Semicond. Sci. Technol.*, 2008, 23, 035026.
- 2. T. Oshima, T. Okuno and S. Fujta, J. Appl. Phys., 2007, 46, 7217–7220.
- Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen and X. W. Fan, *Appl. Phys. Lett.*, 2008, 93, 173505.
- J. Li, Z. Y. Fan, R. Dahal, M. L. Nakarmi, J. Y. Lin and H. X. Jiang, *Appl. Phys. Lett.*, 2006, 89, 213510.
- 5. Y.-Z. Chiou, J. Appl. Phys., 2004, 43, 2432-2434.
- 6. A. F. Zhou, A. Aldalbahi and P. Feng, Opt. Mater. Express, 2016, 6, 3286-3292.
- M. Rivera, R. Velázquez, A. Aldalbahi, A. F. Zhou and P. Feng, *Sci. Rep.*, 2017, 7, 42973.