Electronic Supplementary Information (ESI) for

## Enhanced electrochemical performance of lithium ion batteries using

## Sb<sub>2</sub>S<sub>3</sub> nanorods and graphene composites as anode materials

Yucheng Dong, <sup>a,b</sup> Shiliu Yang, <sup>a</sup> Zhenyu Zhang, <sup>a</sup> Jong-Min Lee, <sup>b\*</sup> Juan Antonio Zapien <sup>a\*</sup>

<sup>a</sup> Center of super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong <sup>b</sup>School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 E-mail: apjazs@cityu.edu.hk, jmlee@ntu.edu.sg,

Synthesis of graphene oxide

First, the graphite powder was oxidized using 0.9 g NaNO<sub>3</sub> and 37 mL of concentrated H<sub>2</sub>SO<sub>4</sub> that were added to 1 g graphite powder cooled in an ice bath. This mixture was continuously stirred while 5 g of KMnO<sub>4</sub> was added slowly over 1 h. It was left to stir for 2 h in the ice bath, and then removed and left for 4 days under continuous stirring. A black viscous liquid was obtained and 100 mL of deionized water was added over 30 min while stirring continuously. The mixture was stirred for a further 2 h, 10 mL H<sub>2</sub>O<sub>2</sub> (30wt% aqueous solution) was slowly added and then the mixture was left to stir for another 2 h. The resulting oxidized material was washed three times by 10wt% diluted hydrochloric acid and then washed by deionized water till the pondus hydrogenii (pH) value was close to 7. A light yellow GO powder was obtained after freeze drying for 12 h.



Fig. 1S XRD pattern of Sb<sub>2</sub>S<sub>3</sub> crystals.



Fig. 2S TGA curve of Sb<sub>2</sub>S<sub>3</sub>/G composites.



Fig. 3S SEM images of Sb<sub>2</sub>S<sub>3</sub>/G composites with half amount of GO with different magnification.



Fig. 4S SEM image of Sb<sub>2</sub>S<sub>3</sub> crystals.



Fig. 5S CV of Sb<sub>2</sub>S<sub>3</sub> crystals at a scan rate of 0.1 mV s<sup>-1</sup> in the voltage range of 0.01-3 V (vs.  $Li^+/Li$ ).



Fig. 6S Cyclic stability of Sb<sub>2</sub>S<sub>3</sub>/HG composites at various current rates.



Fig. 7S (a) Rate capacity of Sb<sub>2</sub>S<sub>3</sub> crystals at various current rates; and (b) cyclic stability of Sb<sub>2</sub>S crystals.



Fig. 8S Cyclic stability of  $Sb_2S_3/G$  composites tested at various current rates.



Fig. 9S SEM image of  $Sb_2S_3/G$  composites with different magnification after 100 cycles at a current rate of 0.2C