Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

## **Supporting Information**

## **Dual Effects of Water Vapor on Ceria-Supported Gold Clusters**

Zhimin Li<sup>a,1</sup>, Weili Li<sup>b,1</sup>, Hadi Abroshan<sup>c</sup>, Qingjie Ge<sup>b,\*</sup>, Gao Li<sup>a,\*</sup>, Rongchao Jin<sup>c</sup>

<sup>a</sup>Gold Catalysis Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

<sup>b</sup>Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

<sup>c</sup>Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

<sup>1</sup>Z.L. and W. L. contributed equally to this work.

E-mail: geqj@dicp.ac.cn (Q.G.); gaoli@dicp.ac.cn (G.L.)

## **Table of Contents**

- Figure S1. Diffuse reflectance optical spectra of the fresh Au<sub>25</sub>(SC<sub>12</sub>H<sub>25</sub>)<sub>18</sub>/CeO<sub>2</sub>
- Figure S2. TEM image of the fresh Au<sub>25</sub>(SC<sub>12</sub>H<sub>25</sub>)<sub>18</sub>/CeO<sub>2</sub> catalyst.
- Figure S3. Blank experiment for the CO oxidation using only plain  $CeO_2$  as the catalyst in the presence of water.
- Figure S4. Control experiment for the CO oxidation using "Au(I)-SR" polymers as the catalyst in the presence of water.
- **Table S1**. Physical property of fresh  $Au_{25}/CeO_2$  and  $Au_{25}/CeO_2$  after the 373K treatment in the presence of water vapor.
- **Figure S5**. XRD patterns of the fresh Au<sub>25</sub>/CeO<sub>2</sub> and Au<sub>25</sub>/CeO<sub>2</sub> after the 373K treatment in the presence of water vapor.
- Figure S6. Temperature-programmed thermogravimetry analysis of the Au<sub>25</sub>(SC<sub>12</sub>H<sub>25</sub>)<sub>18</sub>/CeO<sub>2</sub>.
- Figure S7. The ESI-MS analysis of the detached species from the  $Au_{25}(SR)_{18}/CeO_2$  in the presence of water and  $O_2$ .
- Figure S8. Detachment of one thiolate ligand from Au<sub>25</sub>(SR)<sub>18</sub> cluster.



**Figure S1**. Diffuse reflectance optical spectrum of the fresh  $Au_{25}(SC_{12}H_{25})_{18}/CeO_2$  (red) and comparison with the solution spectrum of  $Au_{25}(SC_{12}H_{25})_{18}$  (black).



**Figure S2**. TEM image of the fresh  $Au_{25}(SC_{12}H_{25})_{18}/CeO_2$  catalyst with EDX analysis. The size of the gold cluster is ca. 1.5 ±0.3 nm.

![](_page_3_Figure_0.jpeg)

Figure S3. Blank experiment for the CO oxidation using only plain  $CeO_2$  as the catalyst in the presence of water.

![](_page_3_Figure_2.jpeg)

**Figure S4.** Control experiment for the CO oxidation using  $[Au(I)-SR]_n$  polymers as the catalyst in the presence of water.

**Table S1**. Physical property of fresh  $Au_{25}/CeO_2$  and  $Au_{25}/CeO_2$  after the 373K treatment in the presence of water vapor.

| Samples                                          | $V_{\text{pore}}$<br>$(\text{cm}^3/\text{g})^a$ | $S_{BET} (cm^2/g)^c$ | Average pore diameter (nm) <sup>c</sup> |
|--------------------------------------------------|-------------------------------------------------|----------------------|-----------------------------------------|
| Au <sub>25</sub> /CeO <sub>2</sub>               | 32.64                                           | 15.13                | 28.6                                    |
| Au <sub>25</sub> /CeO <sub>2</sub> -vapor (373K) | 67.64                                           | 16.23                | 29.4                                    |

<sup>a</sup>V<sub>pore</sub> was measured at  $P/P_0 = 0.98$ . <sup>b</sup>BET method. <sup>c</sup>BJH desorption average pore diameter.

![](_page_4_Figure_3.jpeg)

Figure S5. XRD patterns of the fresh  $Au_{25}/CeO_2$  and  $Au_{25}/CeO_2$  after the 373K treatment in the presence of water vapor.

![](_page_5_Figure_0.jpeg)

**Figure S6**. Temperature-programmed thermo-gravimetric analysis (TGA) of the  $Au_{25}(SC_{12}H_{25})_{18}/CeO_2$  catalyst in the presence of a dry atmosphere. The sample was first treated at 60 °C in vacuum for 6 h (not shown in the figure), and then it was tested in TGA under isothermal conditions at 80/100/110/120 °C (shown as different plateaus in the red curve), respectively. There was no weight loss (see top black curve) at plateaus of 80/100/110/120 °C.

![](_page_6_Figure_0.jpeg)

**Figure S7**. Detachment of one thiolate ligand from the  $Au_{25}(SCH_3)_{18}$  model cluster to result in  $Au_{25}(SCH_3)_{17}$ . The "-SCH<sub>3</sub>" ligand removal in the presence of water (down panel) is more favorable by 45.9 kcal/mol than that in the absence of water (upper panel) in gas phase.

![](_page_7_Figure_0.jpeg)

**Figure S7.** The ESI-MS analysis of the detachment species from the Au<sub>25</sub>(SR)<sub>18</sub>/CeO<sub>2</sub> in the presence of water and O<sub>2</sub> at 100 °C. The strongest mass peak at m/z 274.25 (z = 1) is assigned to RS-SR.