Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

Metal-Ion Responsive Reversible Assembly of DNA Origami Dimers: G-Quadruplex Induced Intermolecular Interaction

Shuo Yang, ^a Wenyan Liu, ^b Rachel Nixon,^a and Risheng Wang *^a

^aDepartment of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, United States ^bCenter for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, MO 65409, United States

*E-mail: wangri@mst.edu

Materials and methods

Materials

All chemicals were purchased from Sigma and used as received without further purification. All chemically synthesized DNA strands were purchased from Integrated DNA Technologies, Inc. (www.Idtdna.com). The unmodified staple strands were ordered in a 96-well plate format, suspended in ultrapure water without purification. All modified strands were purified with PAGE. The DNA origami purification column (100kDa MWCO centrifuge filter) was purchased from Pall, Inc.

Experimental Section

Assembly/disassembly of DNA origami nanostructures

M13mp18 viral DNA and all of the staple strands were mixed together at a 1:5 ratio, in a 1× TAE buffer solution containing 40 mM Tris-HCl, 20 mM of acetic acid, 2 mM of EDTA, and 11.5 mM of magnesium acetate. The mixture was slowly cooled from 90°C to 15°C with PCR over 12h. The final concentration of M13mp18 DNA in the solution was 20 nM. The DNA origami was then purified to remove excess DNA strands, using 100kDa MWCO centrifuge filters.

Formation of DNA origami dimer: The prepared DNA origami monomers were mixed at a molar ratio of 1:1 in a 1×TAE buffer containing 11.5 mM of magnesium acetate. Then, the mixture was annealed from 53°C to 15°C over varied time course from 2h to 12h to form the corresponding DNA origami dimers (Figure S1). The separation of the origami dimer was accomplished by adding varied concentration of potassium chloride or sodium chloride in the solution of DNA origami dimer and incubating at a temperature ranging from 53°C to 15°C over 12 h time course. A 100kDa MWCO centrifuge filter was used to exchange the reaction buffer.

AFM imaging

The AFM images of the DNA origami dimer and monomer were obtained through spotting the sample (3 μ l) onto freshly cleaved muscovite mica (Ted Pella, Inc.) for 15 s. Afer the fixation of targeted structure of DNA origami on mica surface, doubly distilled H₂O (20-30ul) was placed quickly on the mica to remove the buffer salts, the drop was wicked off, and the sample was dried with compressed air. Atomic force imaging was done by utilizing Nanoscope III (Digital Instruments) tapping in air, with ultra-sharp 14 series (NSC 14) tips that had been purchased from NANOANDMORE.

Agarose Gel Electrophoresis

The samples were loaded into 0.8% agarose gel that contained 5 mM Mg(CH₃COO)₂, 20 mM KCl or NaCl in a $1 \times$ TAE buffer solution under 55V at room temperature. The gel was stained with ethidium bromide for DNA visualization.

Supporting Figures

Figure S1. (A) Agarose gel electrophoresis image of assembly of DNA origami dimer with varied annealing period (design corresponding to Figure 1A). Lane 1: DNA origami monomer. Lane 2 to lane 6: corresponding to the annealing period from 12 h, 8 h, 6h, 4h to 2 h respectively. (B) The quantification of band intensity in an agarose gel image (shown in Figure S1A). There is no time-dependence in the formaiton of DNA origami dimer.

Figure S2. An example of an AFM image used to calculate the yield of a DNA origami dimer with the design shown in Figure 1. The blue circles represent a DNA origami dimer; the grey circles represent DNA origami monomer; and the red circles represent the non-counted DNA origami aggregations. The final yield is the average yield of each image.

The following equation was used to calculate the yield of the DNA origami dimer: % Yield = $\frac{Number \ of \ DNA \ origami \ dimers \ x \ 2}{total \ number \ of \ DNA \ origami} X \ 100$

Figure S3. (A) Agarose gel electrophoresis image of dissociation of a DNA origami dimer with different concentrations of Sodium (design corresponding to Figure 1A). Lane 1: DNA origami monomer. Lane 2: DNA origami dimer before Na⁺ treatment. Lane 3 to Lane 6 : DNA origami dimer treated with varied concentrations of Na⁺, 20 mM, 50 mM, 100 mM, 200 mM, respectively. (B) The quantification of band intensity in an agarose gel image (shown in Figure S3A).

Figure S4. (A) Agarose gel electrophoresis image of assembly of DNA origami dimer with varied annealing period (design corresponding to Figure 4A). Lane 1: DNA origami monomer. Lane 2 to lane 4: corresponding to the annealing period from 12 h, 6h, to 2 h respectively. (B) The quantification of band intensity in an agarose gel image (shown in Figure S4A). There is no time-dependence in the formaiton of DNA origami dimer.

Figure S5. (A) Agarose gel electrophoresis image of dissociation of a DNA origami dimer with different concentrations of potassium (design corresponding to Figure 4A). Lane 1: DNA origami monomer. Lane 2: DNA origami dimer before K⁺ treatment. Lane 3 to Lane 6 : DNA origami dimer treated with varied concentrations of K⁺, 50 mM, 100 mM, 200 mM, 300 mM, respectively. (B) The quantification of band intensity in an agarose gel image (shown in Figure S2A).

Figure S6. (A) Schematic drawings of a DNA origami assembly/disassembly driven by intermolecular G-quadruplex. (B) Agarose gel electrophoresis image of a DNA origami dimer with different concentrations of potassium. Lane 1: DNA origami monomer. Lane 2 to Lane 6: mixture of DNA origami with varied K⁺ concentrations, 0 mM, 50 mM, 100 mM, 200 mM, and 300 mM, respectively. (C)-(F) AFM images corresponding to Band 1 through Band 4, respectively. Scale bar, 200nm.

The Stikcy-ends design and sequences of DNA origami:

RC-M1	AGCTAATGCAGAACGCGCCTGTTTTAATATCC
RC-M2	CATCCTAATTTGAAGCCTTAAATCTTTTATCC
RC-M3	TGAATCTTGAGAGATAACCCACAAAACAATGA
RC-M4	AATAGCAATAGATGGGCGCATCGTACCGTATC
RC-M5	GGCCTCAGCTTGCATGCCTGCAGGGAATTCGT
RC-M6	AATCATGGTGGTTTTTTCTTTTCACCCGCCTGG
RC-M7	CCCTGAGAGAGTTGCAGCAAGCGGGTATTGGG
RC-M8	CGCCAGGGTCATAGCTGTTTCCTGGACGGCCA
RC-M9	GTGCCAAGGAAGATCGACATCCAGATAGGTTA
RC-M10	CGTTGGTGTAGCTATCTTACCGAATTGAGCGC
RC-M11	TAATATCAACCTTCGCTAACGAGCCCGACTTG
RC-M12	CGGGAGGTTTTACGAGCATGTAGAACATGTTC
RC-M13	CTGTCCAGACGACGACAATAAACAAACCAATC
RC-M14	AATAATCGCGTTTTAGCGAACCTCGTCTTTCC
RC-M15	AGAGCCTACAAAGTCAGAGGGTAAGCCCTTTT
RC-M16	TAAGAAAAGATTGACCGTAATGGGCCAGCTTT
RC-M17	CCGGCACCCACGACGTTGTAAAACTGTGAAAT
RC-M18	TGTTATCCGGGAGAGGGCGGTTTGCTCCACGCT
RC-M19	GGTTTGCCCCAGCAGGCGAAAATCAATCGGCC
RC-M20	AACGCGCGGCTCACAATTCCACACCCAGGGTT
RC-M21	TTCCCAGTGCTTCTGGTGCCGGAAGTGGGAAC
RC-M22	AAACGGCGGTAAGCAGATAGCCGAAACTGAAC
RC-M23	ACCCTGAAATTTGCCAGTTACAAATTCTAAGA
RC-M24	ACGCGAGGGCTGTCTTTCCTTATCAAGTAATT
RC-M25	GTACCGACAAAAGGTAATTCCAAG
RC-M26	AACGGGTAGAAGGCTTATCCGGTAATAAACAG
RC-M28	GTCGGATTCTCCACCAGGCA

RC-M30 AGCCGGAAGCCAGCTGCATTAATGCTGTTTGATGGTGTCTTCCTGTAGCCAGCTTTAATCGATG RC-M31 GCAAAATTCGGGAAACCTGTCGTGCATAAAGTGTAAAGCGATGTGCT RC-M32 GCAAGGCGTTCGCCATTCAGGCTGCGCAACTG RC-M33 GGAAGCGCTTTATCCCAATCCAAAAAGCAAAT RC-M34 CAGATATATTAAACCATACGGAAATTACCCAAAAGAACTGGCATGATTA RC-M35 AGGCATTTTCGAGCCAGTACTCATCG RC-M36 AGAACAAGTACCGCGCCCAATAGCTAAGAAAC RC-M39 CCTAATGAACTGCCCGCTTTCCAGCCCTTATA RC-M40 AATCAAAAGAATAGCCCTTTAAATATGCATTCTACTA RC-M41 GAGATAGGGTTGTCAGGATTAGAGAGTACCTATTCATT RC-M42 TTGCGCTCGTGAGCTAACTCACATGATAGCCC RC-M43 TATTACGCGGCGATCGGTGCGGGGCGAGGATTT RC-M44 CAGCCTTTGTTTAACGTCAAAAATTTTCAATT RC-M45 GGAATCATCAAGCCGTTTTTATTTGTTATATA RC-M46 TCGCCATATTTAACAACGTTGCGGGGTTTTAAGCCCAA RC-M47 CCAACAGTGTGTGCCCGTATAAACAGTTAACCAGAGC RC-M48 ACTATATGCTCCGGCTTAGGTTGGTCATCGTA RC-M51 TAAAACATCTTTAATGCGCGAACTTAATTGCG RC-M52 CTATTAGTCGCCATTAAAAATACCATAGATTA RC-M53 GAGCCGTCTAGACTTTACAAACAATTCGACAA RC-M54 AATCGCGCAAAAGAAGTTAGTTAGCTTAAACAGCTTGATACGCCCACGC RC-M55 TTTTTAACTAAATGCTGATGCAAAATTGAGAA RC-M56 CAAGACAAAAATCATAGGTCTGAGACAAACAT RC-M59 CACCAGCAGGCACAGATTTAATTTCTCAATCATAAGGGAAC RC-M60 TGCTGGTAATATCCAGAACAATATAAGCGTAA RC-M61 GAATACGTGAAGATAAAAACAGAGGATCTAAAA RC-M62 TATCTTTAAAATCCTTTGCCCGAACCGCGACCTGC CGAAACAAAGTAATAACGGA RC-M63 RC-M64 TTCGCCTGCAAAATTAATTACATTAATAGTGA RC-M65 ATTTATCAAGAACGCGAGAAAACTAGTATAAAGCCAATAAAGAATACAC RC-M66 ATATGCGTTATACAAATTCTTACCTTTTCAAA RC-M67 TATATTTTGACGCTGAGAAGAGTCTAACAATT **RC-M69** ATTTGTATCATCGCTTCTGAATTACAGTAACA **RC-M71** TCAGTATTAACCCTTCTGACCTGATACCGCCA **RC-M72** GCCATTGCAACAGGAAAAACGCTCTGGCCAAC **RC-M73** AGAGATAGAACACCGCCTGCAACAAAATCAAC **RC-M74** AGTAGAAAAGTTTGAGTAACATTA RC-M75 TTTGGATTATACCTGATAAATTGTGTCGAAATCGTTATTA GTACCTTTATTACCTTTTTTAATGCGATAGCT **RC-M76 RC-M77** TAGATTAAAGTTAATTCGATCTTCTTAGTATC **RC-M78** TCATAATTACTAGAAAAAGCCTGTTGACCTAA **RC-M79** ATTTAATGATCCTTGAAAACATAGGAAACAGT **RC-M80** ACATAAATACGTCAGATGAATATATGGAAGGA **RC-M81** ATTGAACCAATATAATCCTGATTGTCATTTTG **RC-M82** CGGAACAATATCTGGTCAGTTGGCGTGCCACG **RC-M83** CTGAGAGCAATAAAAGGGACATTCATGGAAAT **RC-M84** ACCTACATTTTGACGCTCAATCGTCAGTGCGC **RC-M85** CGACCAGTCAGCAGCAAATGAAAATCAAACCC TCAATCAAAGAAACCACCAGAAGGATGATGGC **RC-M86 RC-M87** AATTCATCAACCATATCAAAATTATAGATTTT **RC-M88** CAGGTTTACAATATATGTGAGTGATTAATTTT **RC-M89** CCCTTAGAGTTTGAAATACCGACCCACCGGAA **RC-M90** AAAAGGGTAAGATTGTATAAGCAAAAATTCGC **RC-M91** AATAACCTTTAGAACCCTCATATAAAAGATTC **RC-M92** GAAAGACTCAATTCTGCGAACGAGAAATGGTC RC-M93 CATAGTAATGACTATTATAGTCAGGGAAGCCC **RC-M94** TAACAAAGTTAGGAATACCACATTTTACGAGG **RC-M95** GCTGGCTGACCTTCATCAAGAGTAAATCAACG **RC-M96** GTTGAGATCTGCTCATTCAGTGAAGCGCATAG **RC-M97** CTTTACCCGAGCAACACTATCATAATTCATCA **RC-M98** TTGATTCCTCAAATATCGCGTTTTAATCAGGT

RC-M99	AAAAATTTGTTTAGCTATATTTTCTGTAACAG
RC-M100	AAAACAGGGAGAAAGGCCGGAGACGCAAGGAT
RC-M101	GTTAAATTTTTGTTAAATCAGCTCAAGCCCCA
RC-M102	CACCATCACGGTTGATAATCAGAAATTTTTTA
RC-M103	CGCGAGCTAAGCCTTTATTTCAACAGTCAAAT
RC-M104	CTTCAAAGTGGAAGTTTCATTCCAATTTGGGG
RC-M105	TTACCAGAATGACCATAAATCAAAAATTCGAG
RC-M106	GCCCTGACTATTACAGGTAGAAAGACCCTCGT
RC-M107	ACAGATGAACGGTGTACAGACCAGTAAGGCTT
RC-M108	AACAACATGAGAACACCAGAACGAGAAAGAGG
RC-M110	ACGGTGTCCGAACCAGACCGGAAGAGTTCAGA
RC-M112	ATGTACCCATATGATATTCAACCGAATACTTT
RC-M113	ACCAATAGGAACGCCATCAAAAATTCAATCAT
RC-M114	GATAAATTTCGTAAAACTAGCATGAATTCGCGTCTGGCTGTTCCGAAATCG
RC-M115	ATAGTAGTAACATTATGACCCTGTTTCTAGCT
RC-M116	CAAACTCCAACAGITGAGTGITGTTCGTAGAAGAACTCAAACTTGAATGG
RC-MI17	
RC-MI18	
RC-MI19	
RC-M120	
RC-M123	
RC-M124	
RC-M125	
RC-M120	
RC-M127	
RC-M120	
RC-M129	CTGGCTCAAATTACCTTATGCGATAATGACAA
RC-M130	GCTTAGAGGATAAGAGGTCATTTTTGAAACAT
RC-M134	CTGAGAGTCTACAAAGGCTATCAGACTTGAGC
RC-M135	CATTTGGGATTATCACCGTCACCGGTCATTGC
RC-M136	CTCAGAGCACCGCCACCCTCAGAGATTAAGCA
RC-M137	GAAAGTATTCGGAACCTATTATTCTGCGGATG
RC-M138	CCACAGACACAAACTACAACGCCTGATAGCGT
RC-M139	CAACCATCCGATAGTTGCGCCGACTTTAAGAA
RC-M140	ATAACCGATCATCTTTGACCCCCAGCGATTATACCAAGTTCATGTTACTTAGCCGG
RC-M142	TGCCTATTTAAGAGGCTGAGACTCGAGTTTCG
RC-M144	AAAGGTGAAATTAGAGCCAGCAAAAGCCGCCA
RC-M145	CGCAATAATAACGGAATATTCATT
RC-M146	TAGCACCAAAATATTGTAGTACCGCAATAAGAGAATATAAA
RC-M147	CGCCGCCAGAACCGCCTCCCTCAGATCACCAG
RC-M148	CTAAAGTTCATGTACCGTAACACTCTCAAGAGAAGGATTAGGATTA
RC-M149	TAAAACACTATATTCGGTCGCTGATTTCGAGGAGAATTTCGTAACGAT
RC-M150	GGGAGTTAAACGAAAGAGGCGTCGCTCAACAGTAGGGCTTATCCAATCG
RC-M153	AGACTCCTTTGAGGGAGGGAAGGTTTACCATTAGCAAGGCACCAGAGC
RC-M154	AGTATGTTAGCAAACGTAGAAAATGCGCCAAA
RC-M155	TCACCAATGGCGACATTCAACCGATATTACGC
RC-M156	TCAGACGAAATCAAAATCACCGGACGGAAACG
RC-M157	CCAGGCGGTTTTAACGGGGTCAGTGAGGCAGG
RC-M158	AATGAATTCATTTTCAGGGATAGCGCTCAGTA
RC-M159	TTTTGCGGGAGCCTTTAATTGTATCGTTAGTA
RC-M160	GCCACTACGAAGGCACCAACCTAAAAGGCCGC
RC-M161	TCCAAAAGGATCGTCACCCTCAGCTACGTAAT
RC-M162	ACCACCCTTTCTGTATGGGATTTTTAAAAAGGC
RC-MI63	GTAATAAGATAAGTGCCGTCGAGATCAGAGCC
KC-M164	
KC-MI65	
KC-M166	
KC-MI6/	
KC-M168	
KU-MI69	ΑΤΑΑΤΤΑΤΤΤΤΤΤΤΤΑΤΤΑΤΑΤΑΤΑΤΑΤΑΤΑΑΑΤΤΑΑΑ

RC-M170 ACTTTCAACTCAGAACCGCCACCCGGGTTGAT	
RC-M171 ACAGCATCGTTGAAAATCTCCAAAGCTAAACA	
RC-M172 GAAGTTTCCATTAAACGGGTAAAAAGCGAAAG	
RC-M173 TTTTTCACGGAACGAGGGTAGCAATTCATGAG	
RC-M174 CCGCCACCCAGTTTCAGCGGAGTGATAATAAT	
RC-M175 TACATGGCAGCCCGGAATAGGTGTCCTCAGAA	
RC-M176 TCGGTCATCATTAAAGCCAGAATGAAGCGTCA	
RC-M177 ATAGAAAACGACAGAATCAAGTTTCGGCATTT	
RC-M27-AS CCATATTAATTAGACGGGAGAATTACAAAGTTACC	
RC-M29-AS AAGCGCCAATTAAGTTGGGTAACGAACATACG	
RC-M37-AS GATTTTTTACAGAGAGAATAACATAAAAAACAG	
RC-M38-AS TTGGGAAGCAGCTGGCTTAAAGCTAGCTATTTTTGAGAGAT	
RC-M49-AS ACCTGAGCAGAGGCGAATTATTCAGAAAATAG	
RC-M50-AS AGAAGTATAATAGATAATACATTTCTCTTCGC	
RC-M57-AS CAAGAAAAATTGCTTTGAATACCAAGTTACAA	
RC-M58-AS CTCGTATTGGTGCACTAACAACTAGAACGAAC	
RC-M68-AS TGATTTGATACATCGGGAGAAACACAACGGAG	
RC-M70-AS ATTTTAAAGGAATTGAGGAAGGTTTGAGGCGG	
RC-M109-AS AAACGAGACGACGATAAAAACCAAACTAACGG	
RC-M111-AS TGCGGGAGGAAAAGGTGGCATCAAACTAAAGT	
RC-M121-AS GAATCCCCTGCAAAAGAAGTTTTGGTTGGGAA	
RC-M131-AS CCAATACTTAAAATGTTTAGACTGGTAGCATT	
RC-M133-AS ATAAAGCCGCAAAGAATTAGCAAACCACCACC	
RC-M141-AS TCACCAGTAGCCCTCATATGATGAAAGACTACC	
RC-M143-AS CCCTCAGACGCCACCAGAACCACCATGCCCCC	
RC-M122-AS GTACCAAAAGCATTAACATCCAATGGTGCTGTAGCTCAACATGTTT	
RC-M151-AS TAGGAACCTTGTCGTCTTTCCAGACGGTTTATCAGCTTGCGGCTTGCA	
RC-M152-AS CACCACCGGCATTGACAGGAGGTTGCCTTGAGTAACATAATTTAGGCA	G

Modified DNA sequences corresponding to the design of Figure 1:

Modified DNA sequences corresponding to the design of Figure 4:

Linear GO1 GGGTTAGGGTTAGGGTTAGGGTTTTAAATCGTCGCTATTAAATAACCTTGCTTCTGTTTT Linear GO2 GGGTTAGGGTTAGGGTTAGGGTTTTAAATAAAGAAATTGCGTTAGCACGTAAAACAGTTT Linear GO3 GGGTTAGGGTTAGGGTTAGGGTTTTTGCTGAACCTCAAATAATCTAAAGCATCACCTTTT Linear GQ4 Linear Complementary G1 CCTAACCCTTTTTTGAGTAATGTGTGTGTGGGTTTTTAAATGCAATGCCTTTTT Linear Complementary G2 CCTAACCCTTTTTATTAGATACATTTCGCTAGATTTAGTTTGACCTTTTT Linear Complementary G3 CCTAACCCTTTTTATCAAAAAGATTAAGAAAGCAAAGCGGATTGCTTTTT Linear Complementary G4 CCTAACCCTTTTTATAACGCCAAAAGGAACAACTAATGCAGATACTTTTT Blunt DE1 TTTTCGTTAATATTTGTTAATATTTAAATTGTAAATTTT TTTTGGATATTCATTACCCAATCTTCGACAAGAACCTTTT Blunt DE6 Blunt RE1 TTTTGTTAAATAAGAATAAAGTGTGATAAATAAGGCTTTT Blunt RE6 TTTTACATTGGCAGATTCACCTGAAATGGATTATTTTTT

Modified DNA sequences corresponding to design in Figure S6 (G3):

Blunt RE1 TTTTGTTAAATAAGAATAAAGTGTGATAAATAAGGCTTTT Short G LEFT1 ATAACCTTGCTTCTGTTTTTTGGGTTAGGGTTTTTAAATCGTCGCTATTAA

Modified DNA sequences corresponding to design in Figure S6 (G9):