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Displacement measurement from recorded videos

The displacement was measured with a differential detection algorithm, which expresses the
I,-1
A~ 1B

I,+1

Ad =«

displacement from B, where |5 and I are intensities of the two halves of a region

of interest (ROI) shown in the inset of Fig. S1, and a is calibration factor. To determine o, we

Iy=1g
translated the sample stage over known distances, and determined the corresponding Iy+1g
Iy=1Ip
The results are plotted in Fig.S1, showing that Iy+1g changes linearly with Ad within a

displacement range of ~200 nm. This displacement range is sufficient for measuring cellular
membrane fluctuations, which are typically smaller than a few nm. The slope of the linear
relation was extracted, giving 1/a. Note that beyond the 200 nm displacement range, the
calibration curve we got differs from those reported in weak optical tweezers experiments
because part of the particle image falls out of the field of view.
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Fig. S1 Calibration of differential detection algorithm for tracking membrane fluctuations.
Example shown here is for a 1-um polystyrene particle (image shown in inset).

Differential measurement strategy to remove low frequency common noise

To remove the low frequency system noise, we adopted a differential measurement strategy as
shown in Fig.S2. The particle or membrane image was separated into two sub-images, each
containing half of the particle or membrane. The displacements of the two sub-



particle/membrane were calculated using the algorithm described above, with

IAl_IBl IAZ_IBZ
IA1 IAZ I

+1p and + B2, and %1 and %2 were calibrated separately. The finial

differential displacement was Ad = Ady - AdZ.

Fig.S2 Differential measurement strategy
Shot noise analysis

To verify that the high frequency noise is dominated by shot noise, we varied illumination
intensity and examined the noise dependence on the illumination intensity (Fig.S3). The power
spectral density (PSD) shows that the illumination intensity mainly affects the high frequency
noise (left, Fig. S2). The noise level (integrated from 1 kHz to 50 kHz) is inversely proportional to
the square root of the total number of photons (N) which is expected for shot noise (right of Fig.
S2). We also examined the noise dependence on the number of pixels in a given ROI for a given
illumination intensity (Fig. S4). As expected, the high frequency noise decreases with the
number of pixels (left of Fig. S3) used as the ROI, and the noise level (integrated from 1 kHz to
50 kHz) is inversely proportional to the square root of the total number of pixels (N,). This is
because the total number of photons at a fixed illumination is proportional to the number of
pixels.

10° 0.4
- ND1.7 O
E ND1.4 0.35
o~ 0
e 10
— . 03
9 3
g 10° L 025
g 8 O
o 9 o2
8 1010 = 5
% 1
o 0.15 s

g : > = » . 0.1

10° 10 10 10° 10 10° 0.018 0.02 0.022 0024 0.026 0028 003
Frequency (Hz) 1/\/ﬁ (a u }

Fig. S3 Dependence of noise on illumination intensity. (Left) PSD at different illumination
intensities adjusted by neutral density (ND) optical filters. The fractions of transmittance are
0.02, 0.04, 0.06 and 0.09 for ND=1.7, 1.4, 1.2 and 1.0, respectively. (Right) Noise level
dependence on the number of photons.
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Fig. S4 Dependence of noise on number of pixels for a given ROI. (Left) PSDs of a ROl with
different numbers of pixels. (Right) Noise level dependence on the number of photons for a
given ROI.

Membrane fluctuation of HEK 293 cells was not resolvable without the differential
measurement strategy at slow timescale.
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Fig. S5 Membrane fluctuations of a HEK-293 cell measured with the single point detection. (a)
Time traces of membrane fluctuations (red) and system noise (blue). (b) PSDs of the
corresponding membrane fluctuations (red) and noise (blue). Note that the system noise was

determined from a 1-um polystyrene particle attached a glass coverslip.

Hydrodynamic model.



The model below is based on the Helfrich analysis ! that has been widely used for studying
cellular membrane fluctuations 2°(2-4). The energy of a planar membrane fluctuation is
described by a free energy functional
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(S1)

where h is the displacement of membrane from its equilibrium position, xis the bending
modulus, o is the surface tension, and the integral sums over the whole surface. Using the
equipartition theorem, the auto-correlation function of the fluctuation is

(hq ) R 2
kq +oq ; (52)

where q is the wave number of a membrane fluctuation mode, kg is the Boltzmann constant,
and T is temperature. The temporal height-height correlation function for a bilayer is

kgT ot
(hq(t)hq(O)) =—0 ¢
Kq + oq (S3)

where ¥ (@) is the relaxation rate given by,
(@) = (kq° + 09)/4n (54)

for a free bilayer, where 7 is the mean viscosity of the two fluids separated by the membrane.
According to Wierner-Khinching theorem, PSD is determined from the Fourier transform of the
autocorrelation function,

d* .
PSD (w,r) = f 5 ‘;2 f (hy (DR, (0))e ™ “ dt
T

(S5)

Substituting Eqg. S3 into Eq. S5, and transforming it into polar coordinates, the PSD of single
point detection is given by,

2 + o
d kT .
PSDl(a),r)zfdgf q qz 45’ zfe_]/(q)te_lwtdt
0 0 2m)*kq” + oq

kBT+°°

Saq

T ‘{Kq +oqy* + w* (56)

For differential measurement, we consider displacement difference between two adjacent
locations along the cell edge,



Ah(ryryt) = h(ry,t) - h(rZ,t). (57)
For each g-mode, a phase difference q.(r - r) exists, which allows us to express Eq. S7 as,
r—-r
M (ryrpt) = hy(ryf) = hy(rpt) = hy(ryp)(1 - € )), )
and the autocorrelation function is
| ! iq(r-7)
(Bhy(rir £)Ahy(r,0)) = (Ry(Dhy(0))(2 - 2¢ ) (9]

Fourier transform of Eq. S9 leads to PSD for the two-point detection algorithm, given by

PSDy(w,ryry) = f f Ah (rr t)Ah (rr 0)> - lwt gt

(2m)?

Substituting Eqg. S9 into Eqg. S10, and transforming it into polar coordinates, we obtain the PSD
of two-point detection,

(S10)

kBT+°° H
PSD,(w,ry,ry) = f @) 4 dq
T Kq® + oqy® + w* (S11)
where
2 T
Hq@=-|(1- - 0))do
(q) ﬂf( cos (q|ry - ,|cos ))
0 . (512)
1. Frequency scaling laws of membrane fluctuations

Free bilayer membrane.

_ 3
For a free bilayer, v(q) = (Kq + aq)/477, and we have (Egs. S11 and 12),

T+007T

—cos qr -1,[cos @
PSD,(w,ryry) = fo Iri -] ))dqu
nm Y% (Kq +aq)/4n) + w? (513)

3
At high frequencies, bending modulus dominates, such that ¥4~ > 04, we obtain



dqd6f

kT Tj — Cos q|r1 — 1,|cos 9))

2nm? 0 (Kq /477) + w?

(S14)
We define a characteristic length,
A = (L)IB_
© \4nw (S15)
Substituting q =44 into Eq. S14 leads to
[ri-1,| .
k) +o q 1—COS qcos 6
w '
PSD,(w,ryry) = — f 7 dodgq
2w A, o 1+g¢q
[ri-7o|
+oo p 1—COS 7 qcosH |
2 13 ,,5/3 f f 6 dbdq
(2’ ) 0 1+q . (516)

For single point detection, the high frequency limit of the PSD is

kgT
PSDy(wr)~ 2N13 53
6m(2kn°) " w™
PSDZ(w’Tl’TZ) is a homogenous function and can be written as
[ry =1y
PSD,(w,ry,ry)~PSD(w,r)f 7
w
where
1 [ri =7l 0
o - cos g cos
|r1 - 7’2| 6 il Ao
f =— dfdq
A(l) T 0 0 1 + q
[ri =75l

is a universal function of the ratio ®

(517)

(518)

(S19)
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Fig. S6 plots Ao w , showing an increase and then reach a plateau at large

|r1 - r2|/’1w (corresponding to high @ for a given |r1 a r2|). Thus, according to Eq. S18, we
expect that the two-point PSD follow the same scaling law at the single-point PSD or

., .-53
PSD,(w;ryry) ~ 0™ 4 high frequencies.
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Fig. S6 Numerical calculation of ( Ao Ao

Membrane near a rigid wall.

For cells with cytoskeletons to support the membrane structure, the free membrane
assumption is no longer appropriate. A better approach is to assume that the membrane is
constrained with a rigid wall at a distance D (the spacing between cytoskeleton and membrane).
In this case, the relaxation rate is given by according to a hydrodynamic theory> ©,

¥(@) = K,9"Mq) (520)

where

-2Dgq

(1-e*42Dq + 2(Dq)?)

A@) ==
na .(S21)

For wave numbers 4 < 1/D which is the range achievable experimentally, by Tailor expansion,
we have

K q6D3

- 3n . (S22)

This leads to the modification of Eq. S17, 18 (4,6) as,



- 473
PSD,(w,r) X w _ (523)

Similar to the derivation of Eq. S18, we have

PSD,(w,ry,r,) = PSDy(w,r) - g( =
w

|y - r2|)
(524)

KD3 |7’1 - r2|

where 24nw is a characteristic length, and w is a universal function of

[ri=7,| (|r1‘7"2| [ri =7,

' f( ' ) -4/3
Ao 4o ) is similar to Ay , we thus conclude PSDZ((‘)’rl’TZ) ~w .
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