Electronic Supplementary Information

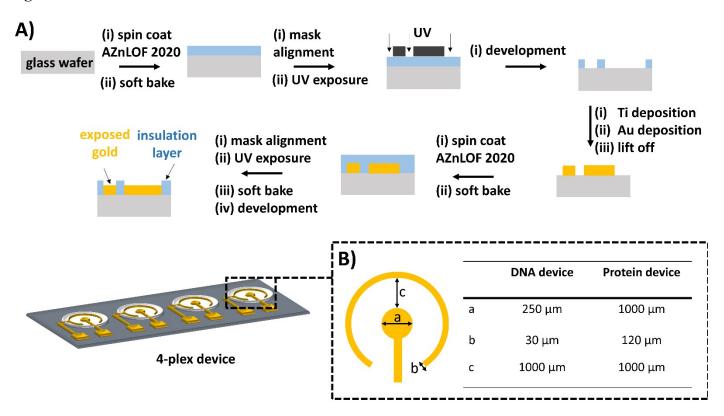
Interfacial nano-mixing in a miniaturized platform enables signal enhancement and in-situ detection of cancer biomarkers

Alain Wuethrich,^{a©} Abu Ali Ibn Sina^{a©}, Mostak Ahmed^a, Ting-Yun Lin^a, Laura G. Carrascosa,^a Matt Trau^{a,b*}

^aCentre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane QLD 4072, Australia

^bSchool of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia

*Corresponding author


[©]Equal Contribution

Tel: +61-7-33464178; Fax: +61-7-33463973

Table of contents

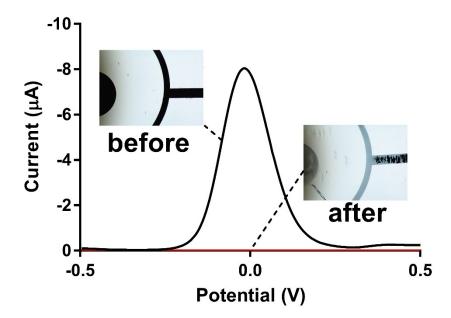

- **Page 1** Figure S1. Schematic representation of the fabrication of nanomixing-enhanced biosensing device.
- **Page 3** Figure S2. Damage of the biosensor due to voltage application.
- **Page 4** Figure S3. Effect of repeated nanomixing on the electrochemical read-out.
- **Page 5** Figure S4. Dynamic range of nanomixing-enhanced sensor.
- **Page 6** Figure S5. Saturation of the enhanced biosensor.
- Page 7 ESI Table S1.

Figure S1.

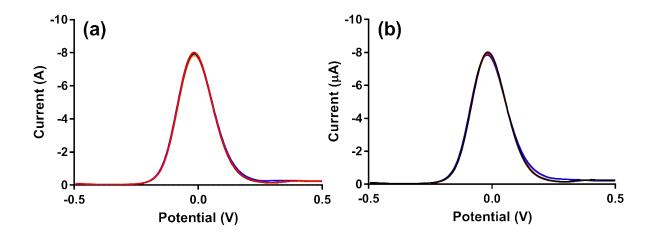

Figure S1. (A) Schematic representation of the fabrication of nanomixing-enhanced 4-plex device. (B) Shows the dimensions of the asymmetric electrodes used for the DNA and protein device.

Figure S2

Figure S2. Damage of the biosensor due to voltage application. The voltammograms before (baseline, black) and after nanomixing for 10 min at 10 V (red). The inset show the brightfield microscope images of the same sensor before and after nanomixing.

Figure S3

Figure S3 shows the effect of repeated nanomixing on the electrochemical read-out using (a) the protein buffer and (b) DNA buffer. Overlaid voltammograms of three repeated nanomixing cycles on the same electrode. Nanomixing was performed in (a) and (b) for $3\min/1.5 \text{ V}/500 \text{ Hz}$ and $3\min/0.8 \text{ V}/500 \text{ Hz}$.

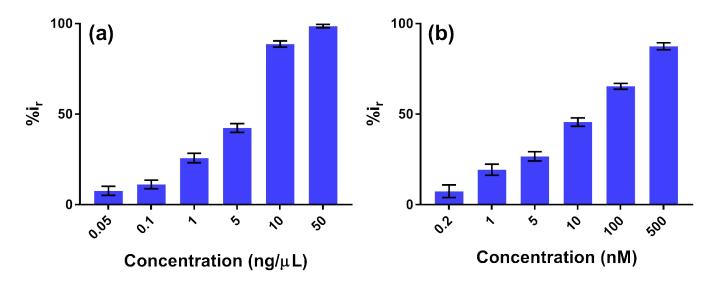
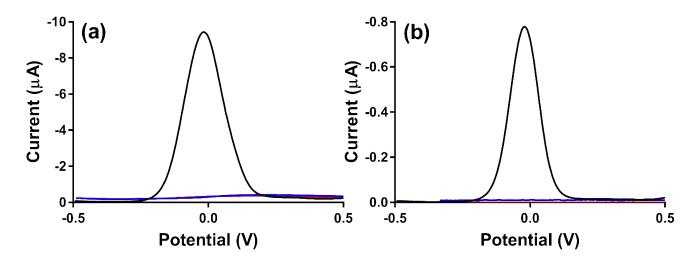



Figure S4

Figure S4. Dynamic range of nanomixing-enhanced sensor for the detection of (a) BSA and (b) synthetic DNA.

Figure S5.

Figure S5. Saturation of the enhanced biosensor. In (a), the concentration of EGFR (red) and phosphorylated EGFR (blue) was 10 ng/ μ L. In (b), the concentration of DNA (red) and methylated DNA (blue) was 5 ng/ μ L. The baseline is shown in black.

Table S1

Description	Sequence
Region of interest from EN1 gene	5'-TTGGTGCCCTGCGCTCCGGGGCTCCCCGCG
	CCGCCTCCACTGCCGCCGCCACCG-3'
Forward primer for asymmetric PCR of	5'-ATTCAGTCCACAACAAYGTTGGTTGAG
EN1 region	TTTATAAGTAGGATAGT-3'
Reverse primer for asymmetric PCR of	5'-ACRACCRCAACAACCAAACCCT-3
EN1 region	
Synthetic DNA	5'-GATAACGACGACAATAAAAACGACGCGAA
	AAACCCCGAAACGCAAAACACCAA-3'