Supporting information

Co-VN encapsuled in bamboo-like N-doped carbon nanotubes for

ultrahigh stability oxygen reduction reaction

Ying Wang,^a Lei Wang,^{*,b} Miaomiao Tong,^b Xiaojun Zhao,^a Yanting Gao,^a Honggang Fu^{*,b}

^a Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.

^b Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.

samples	Co(NO ₃) ₂ ·6H ₂ O (mmol)	NH ₄ VO ₃ (mmol)	Melamine (mmol)	Carbonized temperature (°C)
NGT-Co ₃₀ V ₇₀ -45-900	1.14	2.66	45	900
NGT-C035V65-45-900	1.33	2.47	45	900
NGT-Co ₄₀ V ₆₀ -45-900	1.52	2.28	45	900
NGT-Co ₃₅ V ₆₅ -45-800	1.33	2.47	45	800
NGT-Co ₃₅ V ₆₅ -45-1000	1.33	2.47	45	1000
NGT-Co ₃₅ V ₆₅ -30-900	1.33	2.47	30	900
NGT-Co ₃₅ V ₆₅ -35-900	1.33	2.47	35	900
NGT-Co ₃₅ V ₆₅ -40-900	1.33	2.47	40	900
NGT-Co ₃₅ V ₆₅ -50-900	1.33	2.47	50	900
NGT-Co-45-900	1.33	0	45	900
NC-V-45-900	0	2.47	45	900
NGT-V-45-900	1.33	2.47	45	900
(after acid treatment)				

Table S1. The synthetic conditions for all the compared samples.

Fig. S1 (A) SEM, (B) TEM and (C) HRTEM images of NC-V-45-900. (D) SEM, (E) TEM and (F) HRTEM images of NGT-Co-45-900.

Fig. S2 XRD pattern of the NGT-V-45-900.

		55	05		U
Complete	Co	0	V	Ν	С
Samples	wt. %				
NGT-Co ₃₅ V ₆₅ -45-	6 5 1	6 27	0 05	4 2 1	74.06
900	0.31	0.27	0.83	4.31	/4.00
NGT-Co-45-900	8.23	6.98	0	2.13	82.66

Table S2. The element contents for NGT-Co $_{35}V_{65}$ -45-900 calculated from Fig. 3A.

Fig. S3. Characterizations of the pyrolysis process of the precursor for synthesis of NGT-Co₃₅V₆₅-45-900 by TGA-IR. (A) TG curves of the precursor tested in N₂ ambient, (B) the corresponding IR spectra under 340 °C and 500 °C.

Fig. S4 TEM images of the composites derived from different carbonized temperatures: (A) NGT-Co₃₅V₆₅-45-340 (340 °C), (B) NGT-Co₃₅V₆₅-45-500 (500 °C), (C, D) NGT-Co₃₅V₆₅-45-600 (600 °C), (E) NGT-Co₃₅V₆₅-45-700 (700 °C) and (F) NGT-Co₃₅V₆₅-45-800 (800 °C).

Fig. S5 XRD pattern of NGT-Co $_{35}V_{65}$ -45-600.

Fig. S6 SEM images of the composites derived from different atom ratio of Co:V: (A) NGT-Co₃₀V₇₀-45-900 (atom ratio of Co:V is 30:70) and (B) NGT-Co₄₀V₆₀-45-900 (atom ratio of Co:V is 40:60).

Fig. S7 SEM images of the composites derived from different dosage of melamine: (A) NGT-Co₃₅V₆₅-30-900 (30 mmol), (B) NGT-Co₃₅V₆₅-35-900 (35 mmol), (C) NGT-Co₃₅V₆₅-40-900 (40 mmol) and (D) NGT-Co₃₅V₆₅-50-900 (50 mmol).

Fig. S8 SEM images of the composites derived from different carbonized temperatures: (A) NGT-Co₃₅V₆₅-35-800 and (B) NGT-Co₃₅V₆₅-35-1000.

Fig. S9 (A) LSV curves and (B) Tafel plots for all the compared composites.

Generalize	Eonset	$E_{1/2}$	Tafe slope
Samples	(V)	(V)	(mV dec ⁻¹)
NGT-Co ₃₅ V ₆₅ -45-800	0.89	0.80	76.6
NGT-C035V65-45-900	0.92	0.81	66.1
NGT-Co ₃₅ V ₆₅ -45-1000	0.88	0.79	86.6
NGT-Co ₃₀ V ₇₀ -45-900	0.87	0.77	80.4
NGT-Co ₄₀ V ₆₀ -45-900	0.89	0.80	71.8
NGT-Co ₃₅ V ₆₅ -30-900	0.89	0.80	90.2
NGT-Co ₃₅ V ₆₅ -35-900	0.89	0.79	89.5
NGT-Co ₃₅ V ₆₅ -40-900	0.90	0.80	88.0
NGT-Co ₃₅ V ₆₅ -50-900	0.89	0.79	102.3
NGT-V-45-900 (after acid)	0.88	0.79	70.4
NC-V-45-900	0.89	0.80	72.9
NGT-Co-45-900	0.87	0.78	79.6
Pt/C	1.00	0.85	54.2

Table S3. ORR performances for all the compared samples.