Supporting information

Near ultra-violet to mid-visible band gap tuning of mixed cation

Rb_xCs_{1-x}PbX₃ (X=Cl or Br) perovskite nanoparticles

Daniel Amgar, Tal Binyamin, Vladimir Uvarov, Lioz Etgar*

The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel

*E-mail: lioz.etgar@mail.huji.ac.il

ions	effective ionic radii (Å)	x values	r _A (Å)	t (X=Cl)	t (X=Br)	t (X=I)
Cs^+	1.74	0.0	1.74	0.837	0.830	0.822
Rb^+	1.61	0.2	1.71	0.830	0.825	0.816
Pb^+	1.19	0.4	1.67	0.824	0.819	0.811
Cl-	1.81	0.6	1.66	0.818	0.813	0.806
Br-	1.96	0.8	1.64	0.812	0.807	0.800
I-	2.20	1.0	1.61	0.806	0.801	0.795

Table S1. The parameters used to calculate the effective tolerance factors (t) of $Rb_xCs_{1-x}PbX_3$ (x=Rb content, X=Cl, Br, I), according to the tolerance factor formula. r_A is the calculated effective ionic radius of "A" cation in AMX₃ perovskite structure considering the different ratios between Cs⁺ and Rb⁺ by x being the Rb⁺ content.

Figure S1. Absorbance spectrum of Rb_xCs_{1-x}PbI₃ NPs.

Figure S2. Absorbance spectrum (a) and XRD pattern of tetragonal Rb₆Pb₅Cl₁₆ NPs (b); XRD pattern of Cs0.8Rb0.2PbCl3 sample (c)

	x=0	x=0.2	x=0.4	x=0.6	x=0.8	x=1
Cl	orthorhombic	orthorhombic	orthorhombic	orthorhombic	monoclinic	tetragonal
	CsPbCl ₃	CsPbCl ₃	CsPbCl ₃	CsPbCl ₃	RbPb ₂ Cl ₅	Rb ₆ Pb ₅ Cl ₁₆
	rhombohedral			unidentified	tetragonal	
	Cs ₄ PbCl ₆			phase	Rb ₆ Pb ₅ Cl ₁₆	
Br	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	
	CsPbBr ₃	CsPbBr ₃	CsPbBr ₃	CsPbBr ₃	CsPbBr ₃	
		orthorhombic		tetragonal	tetragonal	
		Cs ₄ PbBr ₆		Rb ₄ PbBr ₆	Rb ₄ PbBr ₆	
				orthorhombic		
				Cs ₄ PbBr ₆		

Table S2. The detected phases from PXRD measurements for the $Rb_xCs_{1-x}PbX_3$ (x=0, 0.2, 0.4, 0.6, 0.8; X=Cl, Br) NPs.

Figure S3. Size distribution histograms of $Rb_xCs_{1-x}PbX_3$ (x=0, 0.2, 0.4, 0.6, 0.8; X=Cl, Br) NPs. The upper purple histograms are related to $Rb_xCs_{1-x}PbCl_3$ and the lower are related to $Rb_xCs_{1-x}PbBr_3$. The average side lengths of each product are written in the text boxes.

Figure S4. Energy dispersive x-ray spectroscopy (EDS) of $Rb_{0.8}Cs_{0.2}PbCl_3$ (x=0.8) NPs; EDS spectrum of the scanned area in the scanning transmission electron microscopy (STEM) image, and quantification of the detected elements: Rb, Cs, Pb, and Cl. The other peaks in the EDS spectrum are related to Cu and C, which are assigned to the carbon grid that is covered with amorphous carbon.

Figure S5. Energy dispersive x-ray spectroscopy (EDS) of $Rb_{0.8}Cs_{0.2}PbBr_3$ (x=0.8) NPs; EDS spectrum of the scanned area in the scanning transmission electron microscopy (STEM) image, and quantification of the detected elements: Rb, Cs, Pb, and Br. The other peaks in the EDS spectrum are related to Cu and C, which are assigned to the carbon grid that is covered with amorphous carbon.

Figure S6. Absorption after a week from the day of synthesis.

Figure S7: XRD for the control experiment with the formula $Cs_{0.2}PbBr_{3}$ in the orthorhombic phase.